Some creatures living in extremely low temperatures can produce some special materials called "antifreeze proteins" (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach "AFP-Pred" for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2010.10.037DOI Listing

Publication Analysis

Top Keywords

antifreeze proteins
12
random forest
8
forest approach
8
sequence similarity
8
afps
6
afp-pred
5
sequence
5
afp-pred random
4
approach predicting
4
predicting antifreeze
4

Similar Publications

Antifreeze Protein-Inspired Zwitterionic Graphene Oxide Nanosheets for a Photothermal Anti-icing Coating.

Nano Lett

January 2025

Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.

View Article and Find Full Text PDF

Glycosylated peptides isolated from cheese whey have antifreezing activity.

Food Chem

December 2024

Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:

The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.

View Article and Find Full Text PDF

The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.

View Article and Find Full Text PDF

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

Gold Nanoparticles Decorated with HPLC6-Derived Peptides as a Platform for Ice Recrystallization Inhibition.

Biomacromolecules

December 2024

DISFARM, Department of Pharmaceutical Sciences, "A. Marchesini" General and Organic Chemistry Section, Università degli Studi di Milano, Via Venezian 21, Milan 20133, Italy.

In nature, organisms living in extreme environmental conditions produce antifreeze proteins (AFPs) that prevent the growth of ice crystals and depress the freezing point of body fluids. In this study, three different peptides derived from the N-terminal sequence of the helical type I AFP HPLC6, along with a stapled derivative produced via on-resin microwave-assisted copper(I)-catalyzed azide-alkyne cycloaddition, were conjugated to gold nanoparticles. The aim of decorating the surface of the nanoparticles with multiple copies of the peptides was to combine the ice-binding capability of the peptides with the size of a nanoparticle, thus, mimicking the protein bulkiness to enhance the peptide antifreeze activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!