The origin of eusociality is often regarded as a change of macroevolutionary proportions [1, 2]. Its hallmark is a reproductive division of labor between the members of a society: some individuals ("helpers" or "workers") forfeit their own reproduction to rear offspring of others ("queens"). In the Hymenoptera (ants, bees, wasps), there have been many transitions in both directions between solitary nesting and sociality [2-5]. How have such transitions occurred? One possibility is that multiple transitions represent repeated evolutionary gains and losses of the traits underpinning sociality. A second possibility, however, is that once sociality has evolved, subsequent transitions represent selection at just one or a small number of loci controlling developmental switches between preexisting alternative phenotypes [2, 6]. We might then expect transitional populations that can express either sociality or solitary nesting, depending on environmental conditions. Here, we use field transplants to directly induce transitions in British and Irish populations of the sweat bee Halictus rubicundus. Individual variation in social phenotype was linked to time available for offspring production, and to the genetic benefits of sociality, suggesting that helping was not simply misplaced parental care [7]. We thereby demonstrate that sociality itself can be truly plastic in a hymenopteran.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2010.10.020 | DOI Listing |
Pathologica
October 2024
University of Padova, Medical School, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova, Italy.
A 46-year-old female complained of cough and dyspnea. A chest X-ray and CT scan showed a solitary subpleural pulmonary nodule in the left upper lobe. Surgical resection was performed.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil.
Tetrapedia diversipes is a Neotropical solitary bee commonly found in trap-nests, known for its morphological adaptations for floral oil collection and prepupal diapause during the cold and dry season. Here, we present the genome assembly of T. diversipes (332 Mbp), comprising 2,575 scaffolds, with 15,028 predicted protein-coding genes.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
January 2025
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania, Via S. Sofia 100, Catania 95123, Italy.
Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, A. nigroolivacea, A.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA.
Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.
View Article and Find Full Text PDFProc Biol Sci
December 2024
General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Many invertebrates exhibit parental care, posited as a precursor to sociality. For example, solitary foundresses of the facultative social orchid bee guard their brood for 6+ weeks before offspring emerge, when the nest may become social. Guarding comes at the fitness cost of foregoing the production of additional offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!