Objective: To achieve secretory and extracellular production of recombinant dengue virus serotypes I-IV envelope glycoprotein domain III (DENV-1-4 EDIII) in Pichia pastoris.
Methods: EDIII genes of DENVI-IV were amplified and cloned into vector pPIC9K, respectively. These recombinant plasmids were then linearized and transferred into Pichia pastoris strain GS115. Clones highly produced in 4.0 mg/ml G418 were amplified and induced by methanol to achieve the secreted recombinant proteins. Ni-NTA agarose beads were used for purification, while SDS-PAGE and Western blotting were used for identification.
Results: The recombinant plasmids pPIC9K-DENV-1-4 EDIII were constructed and successfully transferred into Pichia pastoris strain GS115. The recombinant EDIII proteins were expressed in a secretory way with the molecular weight about 12 × 10(3) and specifically identified by anti-His monoclonal antibody and anti-DENVI-IV mice sera.
Conclusion: DENVI-IV EDIII proteins are successfully achieved from Pichia pastoris expression system and could be used for development of dengue vaccines, diagnostic reagents and study of biological function of the E protein.
Download full-text PDF |
Source |
---|
Microorganisms
December 2024
Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain.
The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast .
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase GOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA. Electronic address:
The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two CH zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:
Polybutylene succinate (PBS), a biodegradable plastic, can be used as an alternative to traditional plastics to effectively solve the growing plastic pollution. Although PBS is theoretically completely biodegradable, slow degradation remains a problem in practical applications, leading to the possibility of environmental pollution. In this study, after the PBS degradation ability of the fungus Paraphoma chrysanthemicola was determined, a P.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand.
Enzymatic depolymerisation is increasingly recognised as a reliable and environmentally friendly method. The development of this technology hinges on the availability of high-quality enzymes and associated bioreaction systems for upscaling biodegradation. Microbial heterologous expression systems have been studied for meeting this demand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!