Background And Purpose: The expression of P-glycoprotein (P-gp), encoded by the multidrug resistance 1 (MDR1) gene, is associated with the emergence of the MDR phenotype in cancer cells. We investigated whether metformin (1,1-dimethylbiguanide hydrochloride) down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr) cells.

Experimental Approach: MCF-7 and MCF-7/adr cells were incubated with metformin and changes in P-gp expression were determined at the mRNA, protein and functional level. Transient transfection assays were performed to assess its gene promoter activities, and immunoblot analysis to study its molecular mechanisms of action.

Key Results: Metformin significantly inhibited MDR1 expression by blocking MDR1 gene transcription. Metformin also significantly increased the intracellular accumulation of the fluorescent P-gp substrate rhodamine-123. Nuclear factor-κB (NF-κB) activity and the level of IκB degradation were reduced by metformin treatment. Moreover, transduction of MCF-7/adr cells with the p65 subunit of NF-κB induced MDR1 promoter activity and expression, and this effect was attenuated by metformin. The suppression of MDR1 promoter activity and protein expression was mediated through metformin-induced activation of AMP-activated protein kinase (AMPK). Small interfering RNA methods confirmed that reduction of AMPK levels attenuates the inhibition of MDR1 activation associated with metformin exposure. Furthermore, the inhibitory effects of metformin on MDR1 expression and cAMP-responsive element binding protein (CREB) phosphorylation were reversed by overexpression of a dominant-negative mutant of AMPK.

Conclusions And Implications: These results suggest that metformin activates AMPK and suppresses MDR1 expression in MCF-7/adr cells by inhibiting the activation of NF-κB and CREB. This study reveals a novel function of metformin as an anticancer agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051382PMC
http://dx.doi.org/10.1111/j.1476-5381.2010.01101.xDOI Listing

Publication Analysis

Top Keywords

mdr1 expression
16
mcf-7/adr cells
12
metformin
11
expression
9
mdr1
9
mdr1 gene
8
mdr1 promoter
8
promoter activity
8
metformin inhibits
4
inhibits p-glycoprotein
4

Similar Publications

Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition.

Eur J Pharm Sci

January 2025

Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:

The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.

View Article and Find Full Text PDF

Azole Resistance and Mutation in Clinical Isolates of .

J Fungi (Basel)

January 2025

Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil.

We investigated the molecular mechanisms underlying azole resistance in seven isolates that caused candidemia and candiduria in Paraná, Brazil (2016-2022). Biofilm production, antifungal susceptibility testing, multilocus sequence typing, amplification and sequencing of , and quantification of , , and expression levels were performed. Notably, five isolates (71.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the synergistic effects of the chemotherapy drug Carfilzomib (CFZ) and Pistachio hull extract on the SK-BR3 breast cancer cell line.

Methods: In this experimental study, we evaluated the effect of Pistachio hull extract and CFZ as standalone treatments on cell viability using the MTT assay at 24- and 48-hours post-treatment. Following this, we conducted combination therapy analyses to assess the potential synergistic relationship between Pistachio hull extract and CFZ after 24- and 48-hours of treatment on both the SK-BR3 breast cancer cell line and the MCF10A normal cell line.

View Article and Find Full Text PDF

Access of drugs to the central nervous system is limited by the blood-brain barrier, and this in turn affects drug efficacy/toxicity. To date, most drug discovery optimization paradigms have relied heavily on in vitro transporter assays and preclinical species pharmacokinetic evaluation to provide a qualitative assessment of human brain penetration. Because of the lack of human brain pharmacokinetic data, mechanistic models for preclinical species, combined with in vitro and in silico data, are useful for translation to human.

View Article and Find Full Text PDF

Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor.

Phytomedicine

February 2025

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China. Electronic address:

Background: Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!