Background: Transforming growth factor-β1 (TGF-β1), its downstream signaling mediators (Smad proteins), and specific targets, including connective tissue growth factor (CTGF), play important roles in tissue remodeling and fibrosis via myofibroblast activation. We investigated the effect of overexpression of Smad7, a TGF-β1 signaling inhibitor, on transition of gingival fibroblast to myofibroblast. Moreover, we analyzed the participation of CTGF on TGF-β1-mediated myofibroblast transformation.

Methods: To study the inhibitory effect of Smad7 on TGF-β1/CTGF-mediating gingival fibroblast transition into myofibroblasts, we stably overexpressed Smad7 in normal gingival fibroblasts and in myofibroblasts from hereditary gingival fibromatosis (HGF). Myofibroblasts were characterized by the expression of the specific marker isoform α of the smooth muscle actin (α-SMA) by Western blot, flow cytometry, and immunofluorescence. Enzyme-linked immunosorbent assay for type I collagen was performed to measure myofibroblast activity. CTGF's role on myofibroblast transformation was examined by enzyme-linked immunosorbent assay and small interference RNA.

Results: TGF-β1 induced the expression of α-SMA and CTGF, and small interference RNA-mediating CTGF silencing prevented fibroblast-myofibroblast switch induced by TGF-β1. In Smad7-overexpressing fibroblasts, ablation of TGF-β1-induced Smad2 phosphorylation marked decreased α-SMA, CTGF, and type I collagen expression. Similarly, HGF transfectants overexpressing Smad7 demonstrated low levels of α-SMA and phospho-Smad2 and significant reduction on CTGF and type I collagen production.

Conclusions: CTGF is critical for TGF-β1-induced gingival fibroblast-myofibroblast transition, and Smad7 overexpression is effective in the blockage of myofibroblast transformation and activation, suggesting that treatments targeting myofibroblasts by Smad7 overexpression may be clinically effective in gingival fibrotic diseases, such as HGF.

Download full-text PDF

Source
http://dx.doi.org/10.1902/jop.2010.100510DOI Listing

Publication Analysis

Top Keywords

type collagen
12
transforming growth
8
gingival fibroblast-myofibroblast
8
fibroblast-myofibroblast transition
8
connective tissue
8
tissue growth
8
growth factor
8
gingival fibroblast
8
enzyme-linked immunosorbent
8
immunosorbent assay
8

Similar Publications

Functional Characteristics of the Crosstalk Between Vocal Fold Fibroblasts and Macrophages-The Role of Vibration in Vocal Fold Inflammation.

J Voice

January 2025

Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.

Objectives: This in vitro study investigated the interaction between human vocal fold fibroblasts (hVFF) and macrophages under the influence of cigarette smoke extract (CSE) and vibration as potential regulators of vocal fold (VF) inflammation.

Study Design: Experimental in vitro pilot study.

Methods: Immortalized hVFF were cultured in flexible-bottomed cell culture plates, treated with CSE, and subjected to static or dynamic conditions in a phonomimetic bioreactor.

View Article and Find Full Text PDF

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Aortic valve leaflet assessment to inform novel bioinspired materials: Understanding the impact of collagen fibres on the tissue's mechanical behaviour.

J Mech Behav Biomed Mater

December 2024

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:

Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.

View Article and Find Full Text PDF

The combination of alcohol and a low-carbohydrate, high-protein, high-fat atherogenic diet (AD) increases the risk of lethal arrhythmias in apolipoprotein E/low-density lipoprotein receptor double-knockout (AL) mice with metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates whether left ventricular (LV) myocardial interstitial fibrosis (MIF), formed during the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributes to this increased risk. Male AL mice were fed an AD with or without ethanol for 16 weeks, while age-matched AL and wild-type mice served as controls.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!