The first results from a clinical study for Temoporfin-mediated photodynamic therapy (PDT) of low-grade (T1c) primary prostate cancer using online dosimetry are presented. Dosimetric feedback in real time was applied, for the first time to our knowledge, in interstitial photodynamic therapy. The dosimetry software IDOSE provided dose plans, including optical fiber positions and light doses based on 3-D tissue models generated from ultrasound images. Tissue optical property measurements were obtained using the same fibers used for light delivery. Measurements were taken before, during, and after the treatment session. On the basis of these real-time measured optical properties, the light-dose plan was recalculated. The aim of the treatment was to ablate the entire prostate while minimizing exposure to surrounding organs. The results indicate that online dosimetry based on real-time tissue optical property measurements enabled the light dose to be adapted and optimized. However, histopathological analysis of tissue biopsies taken six months post-PDT treatment showed there were still residual viable cancer cells present in the prostate tissue sections. The authors propose that the incomplete treatment of the prostate tissue could be due to a too low light threshold dose, which was set to 5 J∕cm2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.3495720 | DOI Listing |
Ophthalmol Retina
January 2025
Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada.
J Cosmet Dermatol
January 2025
Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
Adv Mater
January 2025
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.
Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.
X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!