We report the measurement of the spin polarization of hydrogen (SPH) atoms by (2+1) laser-induced fluorescence, produced via the photodissociation of thermal HBr molecules with circularly polarized 193 nm light. This scheme, which involves two-photon laser excitation at 205 nm and fluorescence at 656 nm, offers an experimentally simpler polarization-detection method than the previously reported vacuum ultraviolet detection scheme, allowing the detection of SPH atoms to be performed more straightforwardly, from the photodissociation of a wide range of molecules and from a variety of collision experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3503974DOI Listing

Publication Analysis

Top Keywords

2+1 laser-induced
8
laser-induced fluorescence
8
sph atoms
8
fluorescence spin-polarized
4
spin-polarized hydrogen
4
hydrogen atoms
4
atoms report
4
report measurement
4
measurement spin
4
spin polarization
4

Similar Publications

Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel.

Anal Chim Acta

January 2025

Key Laboratory of High Performance Manufacturing for Aero Engine (MIIT), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China. Electronic address:

Background: Fast and accurate classification of steel can effectively improve industrial production efficiency. In recent years, the use of laser-induced breakdown spectroscopy (LIBS) in conjunction with other techniques for material classification has been developing. Plasma Acoustic Emission Signal (PAES) is a type of modal information separate from spectra that is detected using LIBS, and it can reflect some of the sample's physicochemical information.

View Article and Find Full Text PDF

Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.

View Article and Find Full Text PDF

Atmospheric reaction of CH=CHCHOCFCHF with OH radicals and Cl atoms, UV and IR absorption cross sections, and global warming potential.

Environ Sci Pollut Res Int

December 2024

Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 1B, 13071, Ciudad Real, Spain.

In this work, the rate coefficients for OH radical, k(T), and Cl atom, k(T), reaction with allyl 1,1,2,2-tetrafluoroethyl ether, CH=CHCHOCFCHF, were studied as a function of temperature and pressure in a collaborative effort made between UCLM, Spain, and LAPKIN, Greece. OH rate coefficients were determined in UCLM, between 263 and 353 K and 50-600 Torr, using the absolute rate method of pulsed laser photolysis-laser-induced fluorescence technique, while Cl kinetics were studied in temperature (260-363 K) and pressure (34-721 Torr) ranges, using the relative rate method of the thermostated photochemical reactor equipped with Fourier transform infrared spectroscopy as the detection technique. In both OH and Cl reactions, a negative temperature dependence of the measured rate coefficients was observed, which is consistent with complex association reactions.

View Article and Find Full Text PDF

Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser.

Micromachines (Basel)

October 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • The study details the creation of micro/nano structures using femtosecond laser processing, which incorporate periodic microstructures, LIPSS, and nanoparticles.
  • Perfluorosilane modification was applied to develop hydrophobic characteristics, resulting in an impressive reflective reduction of silicon surfaces to 3.0% and a high contact angle of 172.3°, indicating superhydrophobicity.
  • The research contributes to understanding anti-reflection and superhydrophobicity mechanisms while offering new design methods for self-cleaning and anti-reflective surfaces.
View Article and Find Full Text PDF

Needle-Free Targeted Injections Using Bubble Laser Technology in Therapeutics.

Langmuir

November 2024

UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia.

This work explores bubble laser technology as an alternative to needles in injection systems for vaccination, cancer treatment, insulin delivery, and catheter hygiene. The technology leverages laser-induced microfiltration and bubble dynamics to create high-speed pneumatic jets that penetrate the skin without needles, addressing discomfort, infection risk, and needle-related concerns. The system's performance is analyzed based on laser wavelength, pulse duration, and Gaussian beam droplet size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!