Spider attachment disc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila clavipes . MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySp1. PySp2 contains internal block repeats that consist of two subrepeat units: one dominated by Ser, Gln, and Ala and the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich subrepeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequences with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm101002w | DOI Listing |
Biomacromolecules
January 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).
View Article and Find Full Text PDFBiomacromolecules
January 2025
Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
Silk fiber, produced by the silkworm , is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
The demand for antibacterial, antifungal, and deodorant textiles has grown significantly with the increasing concern for health and hygiene. In this study, novel functional cotton fabric (EE) with long-lasting antibacterial, antifungal, and deodorant activity was prepared by graft modification with triclosan and eugenol. EE shows more than 99% antibacterial and antifungal activity against , , , and through mechanisms such as inhibiting enzyme activity and disrupting cell structure.
View Article and Find Full Text PDFACS Omega
January 2025
Chemistry Department, Koc University, Sariyer, Istanbul 34450, Turkey.
Silk fibroin (SF), a natural polymer with very desirable physicochemical and biological properties, is an ideal material for crafting biocompatible scaffolds in tissue engineering. However, conventional methods for removing the sericin layer and dissolving SF often involve environmentally harmful reagents and processes, requiring extensive dialysis procedures to purify the fibers produced. Such processes may also damage the surface and bulk properties of the SF produced.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!