The appearance of arachidonic acid (AA) oxidation products in fetal rabbit brain and placenta under normal or partial short-term ischemic episodes induced by placental blood vessel restriction was examined. Intracerebral administration of [3H]AA into close-to-term rabbit fetuses gave rise to radioactively labeled prostaglandin (PG) E2, thromboxane B2, and 6-keto-PGF1 alpha metabolites as detected by HPLC analysis. A significant increase of 20-30% of [3H]AA precursor into eicosanoids was detected in brain of fetuses after 2-h restriction. The thromboxane B2 and 6-keto-PGF1 alpha levels were determined by radioimmunoassay technique over a period of 48 h following ischemic episodes. Thromboxane B2 content in affected animals was higher by five- and twofold at 3 h over control fetal brain and placental tissue values, respectively, and remained significantly higher for 24 h. 6-Keto-PGF1 alpha levels reached a peak value that was greater by 2.5- and 1.5-fold at 6 h for the ischemic brain and placental tissue, respectively, compared with control fetuses. PGE2 levels were less affected, attaining a maximum of 1.9- and 1.1-fold in brain and placenta correspondingly. The thromboxane/prostacyclin ratio reached a maximum in the brain after approximately 3 h, while that in the placenta continued to rise even after 20 h. Persisting high levels of thromboxane are indicative of cerebral vasoconstriction and may suggest possible damaging effects.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1990.tb01911.xDOI Listing

Publication Analysis

Top Keywords

brain placenta
16
ischemic episodes
12
6-keto-pgf1 alpha
12
fetal rabbit
8
rabbit brain
8
thromboxane 6-keto-pgf1
8
alpha levels
8
brain placental
8
placental tissue
8
brain
7

Similar Publications

The placenta is a fetal endocrine organ that secretes many neuroactive factors, including steroids, that play critical roles in brain development. The study of the placenta-brain axis and the links between placental function and brain development represents an emerging research area dubbed "neuroplacentology." The placenta drives many circulating fetal steroids to very high levels during gestation.

View Article and Find Full Text PDF

Background: Placental growth factor (PIGF) is an angiogenic, pro-inflammatory biomarker that is overexpressed in cardiovascular diseases. Recent literature has linked PIGF to the identification of cognitive impairment with white matter burden. Worry is associated with an increased risk for cardiovascular disease, accelerated aging and subsequent reduced brain volume, and decline in cognition.

View Article and Find Full Text PDF

Available evidence from animal studies suggests that placental serotonin plays an important role in proper fetal development and programming by altering brain circuit formation, which later translates into altered abnormal adult behaviors. Several environmental stimuli, including stress and maternal inflammation, affect placental and, hence, fetal serotonin levels and thus may disturb fetal brain development. We investigated the effect of prenatal stress of varying intensities on the formation of adaptive behaviors in mouse offspring and the role of placental serotonin in these processes.

View Article and Find Full Text PDF

Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development.

View Article and Find Full Text PDF

Transplacental signals involved in the programming effects of prenatal psychosocial stress on neurodevelopment.

Neurotoxicol Teratol

January 2025

Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Office of the President, Burroughs Wellcome Fund, Research Triangle Park, Durham, NC, United States. Electronic address:

Exposure to psychosocial stress during pregnancy has been associated with the emergence of neurodevelopmental and neuropsychiatric disorders in offspring. The placenta is known to orchestrate various functions that are essential for normal fetal development, including the brain. It has therefore been postulated that alterations in such functions, and downstream signaling, have the potential to dramatically affect brain developmental trajectories and contribute to adverse neurodevelopmental outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!