Four pairs of positional isomers of ureidopeptides, FmocNH-CH(R(1))-ϕ(NH-CO-NH)-CH(R(2))-OY and FmocNH-CH(R(2))-ϕ(NH-CO-NH)-CH(R(1))-OY (Fmoc = [(9-fluorenyl methyl)oxy]carbonyl; R(1) = H, alkyl; R(2) = alkyl, H and Y = CH(3)/H), have been characterized and differentiated by both positive and negative ion electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). The major fragmentation noticed in MS/MS of all these compounds is due to --N--CH(R)--N--bond cleavage to form the characteristic N- and C-terminus fragment ions. The protonated ureidopeptide acids derived from glycine at the N-terminus form protonated (9H-fluoren-9-yl)methyl carbamate ion at m/z 240 which is absent for the corresponding esters. Another interesting fragmentation noticed in ureidopeptides derived from glycine at the N-terminus is an unusual loss of 61 units from an intermediate fragment ion FmocNH = CH(2) (+) (m/z 252). A mechanism involving an ion-neutral complex and a direct loss of NH(3) and CO(2) is proposed for this process. Whereas ureidopeptides derived from alanine, leucine and phenylalanine at the N-terminus eliminate CO(2) followed by corresponding imine to form (9H-fluoren-9-yl)methyl cation (C(14)H(11) (+)) from FmocNH = CHR(+). In addition, characteristic immonium ions are also observed. The deprotonated ureidopeptide acids dissociate differently from the protonated ureidopeptides. The [M - H](-) ions of ureidopeptide acids undergo a McLafferty-type rearrangement followed by the loss of CO(2) to form an abundant [M - H - Fmoc + H](-) which is absent for protonated ureidopeptides. Thus, the present study provides information on mass spectral characterization of ureidopeptides and distinguishes the positional isomers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.1862DOI Listing

Publication Analysis

Top Keywords

positional isomers
12
ureidopeptide acids
12
electrospray ionization
8
tandem mass
8
mass spectrometry
8
fragmentation noticed
8
derived glycine
8
glycine n-terminus
8
ureidopeptides derived
8
protonated ureidopeptides
8

Similar Publications

Dynamic Covalent Spiropyran Exchange for Rapid Structural Diversification.

Angew Chem Int Ed Engl

January 2025

Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory of Organic Chemistry and Functional Materials, Brook-Taylor-Str. 2, 12489, Berlin, GERMANY.

Here we disclose that spiropyrans are able to undergo dynamic covalent exchange via their corresponding merocyanine isomers. In the latter, the indolinium moieties can be exchanged by a Michael-type addition-elimination sequence, in which a methylene indoline attacks a merocyanine and subsequently the initial indoline fragment is cleaved. The rate and position of the exchange equilibrium strongly depend on the reaction conditions as well as the substitution pattern on the methylene indoline fragments.

View Article and Find Full Text PDF

Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.

View Article and Find Full Text PDF

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

[Progress in applications of ambient ionization mass spectrometry for lipids identification].

Se Pu

January 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

FAST MS: Software for the Automated Analysis of Top-Down Mass Spectra of Polymeric Molecules Including RNA, DNA, and Proteins.

J Am Soc Mass Spectrom

December 2024

Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.

Top-down mass spectrometry (MS) enables comprehensive characterization of modified proteins and nucleic acids and, when native electrospray ionization (ESI) is used, binding site mapping of their complexes with native or therapeutic ligands. However, the high complexity of top-down MS spectra poses a serious challenge to both manual and automated data interpretation, even when the protein, RNA, or DNA sequence and the type of modification or the ligand are known. Here, we introduce FAST MS, a user-friendly software that identifies, assigns and relatively quantifies signals of molecular and fragment ions in MS and MS/MS spectra of biopolymers with known sequence and provides a toolbox for statistical analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!