Recent advances in stem cell research have highlighted the role played by such cells and their environment (the stem cell niche) in tissue renewal and homeostasis. The control and regulation of stem cells and their niche are remaining challenges for cell therapy and regenerative medicine on several tissues and organs. These advances are important for both, the basic knowledge of stem cell regulation, and their practical translational applications into clinical medicine. This article is primarily concerned with the mesenchymal stem cells (MSCs) and it reviews the current aspects of their own niche. We discuss on the need for a deeper understanding of the identity of this cell type and its microenvironment in order to improve the effectiveness of any cell therapy for regenerative medicine. Ex vivo reproduction of the conditions of the natural stem cell niche, when necessary, would provide success to tissue engineering. The first challenge of regenerative medicine is to find cells able to replace and/or repair the lost function of tissues and organs by disease or aging and the trophic and immunomodulatory effects recently found for MSCs open up for new opportunities. If MSCs are pericytes, as it has been proposed, perhaps it may explain the ubiquity of these cells and their possible role in miscellaneous repairs throughout the body opening for new chances for extensive tissue repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12015-010-9195-5 | DOI Listing |
Turk Neurosurg
March 2024
SBÜ Gaziosmanpaşa Eğitim ve Araştırma Hastanesi.
Erdheim-Chester Disease is a rare systemic xanthogranulomatous infiltrating disease, characterized by lipid-laden histiocytes accumulating in various organs and almost always in bones. Etiology of the disease is still unknown. It may involve various organs and systems, such as musculoskeletal, cardiac, pulmonary, renal, gastrointestinal and central nervous system (CNS) as well as the skin.
View Article and Find Full Text PDFClin Genet
January 2025
NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, ChangSha, China.
An increasing number of patients utilizing in vitro fertilization (IVF) and assisted reproductive technology (ART) are characterized as impaired or poor ovarian responders (PORs). Owing to its unclear molecular etiology, the management of patients with age-related ovarian characteristics remains a controversial and complex clinical concern. Therefore, it is important to identify and understand the etiological causes behind POR to develop more effective and efficient management strategies for these patients.
View Article and Find Full Text PDFJ Biophotonics
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India.
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!