Lipotoxicity in diabetic nephropathy: the potential role of fatty acid oxidation.

Clin J Am Soc Nephrol

Department of Internal Medicine/Nephrology Section, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina 27157-1053, USA.

Published: December 2010

Cellular toxicity mediated by lipids (lipotoxicity) has been implicated in the pathophysiology of metabolic syndrome and diabetes mellitus. Genetic analyses now implicate lipotoxicity in susceptibility to type 2 diabetes mellitus-associated nephropathy (T2DN), a pathway that had previously been unexplored. A genome-wide association study in Japanese patients identified a single nucleotide polymorphism in the acetyl-CoA carboxylase β (ACACB) gene associated with T2DN. Replication analyses suggest that this same polymorphism may be a diabetic nephropathy risk allele in other ethnic groups. The ACACB gene (also called ACC2 or acetyl-CoA carboxylase 2) plays a critical role in intracellular fatty acid (FA) oxidation. This manuscript reviews the physiology of FA metabolism and adverse cellular effects that can result from dysregulation of this process. It is hypothesized that glomerular and tubular dysfunction can be induced by increases in intracellular FA concentrations, a process that may be enabled by genetic risk variants. This novel glucolipotoxicity hypothesis in T2DN warrants further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.2215/CJN.08160910DOI Listing

Publication Analysis

Top Keywords

diabetic nephropathy
8
fatty acid
8
acid oxidation
8
acetyl-coa carboxylase
8
acacb gene
8
lipotoxicity diabetic
4
nephropathy potential
4
potential role
4
role fatty
4
oxidation cellular
4

Similar Publications

Diabetes mellitus (DM) is a major metabolic disease endangering global health, with diabetic nephropathy (DN) as a primary complication lacking curative therapy. Sporoderm-broken spores of (GLP), an herbal medicine, has been used for the treatment of metabolic disorders. In this study, DN was induced in Sprague-Dawley rats using streptozotocin (STZ) and a high-fat diet (HFD), and the protective mechanisms of GLP were investigated through transcriptomic, metabolomic, and network pharmacology (NP) analyses.

View Article and Find Full Text PDF

Objective: This study aimed to systematically evaluate the safety of cyclosporine (CsA) and tacrolimus (TAC) in pediatric nephrotic syndrome (NS) patients using real-world data from the FDA Adverse Event Reporting System (FAERS).

Methods: We analyzed adverse event (AE) reports from the FAERS database between Q4 2003 and Q2 2024, focusing on AEs associated with CsA and TAC in NS patients aged 18 years and younger. We employed three signal detection methods-Proportional Reporting Ratio (PRR), Relative Reporting Ratio (RRR), and Reporting Odds Ratio (ROR)-to assess the risk of drug-related AEs.

View Article and Find Full Text PDF

High mobility group box 1 (HMGB1) mediates nicotine-induced podocyte injury.

Front Pharmacol

January 2025

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.

Introduction: Cigarette smoking is a well-established risk factor for renal dysfunction. Smoking associated with renal damage bears distinct physiological correlations in conditions such as diabetic nephropathy and obesity-induced glomerulopathy. However, the cellular and molecular basis of such an association remains poorly understood.

View Article and Find Full Text PDF

Background: The glomerular podocyte endoplasmic reticulum is a critical component in renal function, yet its research landscape is not fully understood. This study aims to map the existing research on podocyte endoplasmic reticulum by analyzing publications in the Web of Science Core Collection (WOSCC) from the past 19 years.

Methods: We conducted a bibliometric analysis using Citespace, VOSviewer, the Metrology Literature Online platform, and the Bibliometrix software package to visualize and interpret the data from WOSCC.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) attributed to diabetes, termed diabetic kidney disease (DKD), is increasing with the rising global prevalence of diabetes. Patterns of DKD onset and progression have shifted in recent years because of population aging and advances in the treatment of diabetes. Prevention of the onset and progression of micro/macro-albuminuria is possible through comprehensive and strict management of lifestyle, blood glucose, blood pressure, and lipids in people with diabetes and early DKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!