AI Article Synopsis

  • Phytase breaks down phytate in grains to release bioavailable inorganic phosphate, but traditional assays for measuring this activity are time-consuming and hazardous.
  • The article introduces a new kinetic assay method that uses IP(6)-lysozyme complexes, which simplifies the process and can be adapted for high-throughput testing.
  • This method effectively measures phytase activity by monitoring changes in turbidity, while also investigating how different conditions like temperature and salt concentrations affect the assay results.

Article Abstract

Phytase (EC 3.1.3.-) hydrolyzes phytate (IP(6)) present in cereals and grains to release inorganic phosphate (P(i)), thereby making it bioavailable. The most commonly used method to assay phytase, developed nearly a century ago, measures the P(i) liberated from IP(6). This traditional endpoint assay is time-consuming and well known for its cumbersomeness in addition to requiring extra caution for handling the toxic regents used. This article reports a simple, fast, and nontoxic kinetic method adaptable for high throughput for assaying phytase using IP(6)-lysozyme as a substrate. The assay is based on the principle that IP(6) forms stable turbid complexes with positively charged lysozyme in a wide pH range, and hydrolysis of the IP(6) in the complex is accompanied by a decrease in turbidity monitored at 600 nm. The turbidity decrease correlates well to the released P(i) from IP(6). This kinetic method was found to be useful in assaying histidine acid phytases, including 3- and 6-phytases, a class representing all commercial phytases, and alkaline β-propeller phytase from Bacillus sp. The influences of temperature, pH, phosphate, and other salts on the kinetic assay were examined. All salts, including NaCl, CaCl(2), and phosphate, showed a concentration-dependent interference.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2010.10.034DOI Listing

Publication Analysis

Top Keywords

simple fast
8
kinetic assay
8
kinetic method
8
assay
5
ip6
5
kinetic
4
fast kinetic
4
assay phytases
4
phytases phytic
4
phytic acid-protein
4

Similar Publications

Purpose: We report a novel technique which enables to cut any kind of foldable lens and extract it using capsulorhexis forceps and a 1.2 mm single-use slit angled knife.

Methods: The technique consists in using the capsulorhexis forceps to mantain and stabilize the IOL in the anterior chamber, and while one hand holds the IOL in that way, the second hand introduces a 1.

View Article and Find Full Text PDF

Ultrahigh Selectivity HS Gas Sensor Based CsPbBr Perovskites via Pb-S Bonding Interaction.

ACS Sens

January 2025

State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.

High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!