Objective: Depletion of glycogen stores is associated with fatigue during both sprint and endurance exercises and therefore it is considered important to maintain adequate tissue stores of glycogen during exercise. The aims of the present study in rats were therefore to investigate the effects of preexercise supplementation with carbohydrate and whey protein hydrolysates (WPH) on glycogen content, and phosphorylated signaling molecules of key enzymes that regulate glucose uptake and glycogen synthesis during exercise.
Methods: Male SD rats were used in the study (n=7/group). Prior to exercise, one group of rats was sacrificed, whereas the other groups were given either water, glucose, or glucose plus WPH solutions. After ingestion of the test solutions, glycogen-depleting exercise was carried out for 60 min. The rats were then sacrificed and the triceps muscles excised quickly.
Results: Compared to water or glucose only, preexercise ingestion of glucose plus WPH caused a significant attenuation of muscle glycogen depletion during the postexercise period. Coingestion of glucose and WPH also significantly lowered phosphorylated glycogen synthase levels compared to ingestion of water only. In the glucose plus WPH group, the levels of phosphorylated Akt were increased significantly compared to the group ingesting water only, while the levels of phosphorylated PKC were significantly higher than in the groups ingesting only water or glucose.
Conclusion: Taken together, these results indicate that, compared to ingestion of glucose or water only, preexercise ingestion of carbohydrate plus WPH activates skeletal muscle proteins of key enzymes that regulate glucose uptake and glycogen synthesis during exercise, thereby attenuating exercise-induced glycogen depletion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2010.08.021 | DOI Listing |
Eur J Nutr
September 2023
Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
Purpose: Obesity is a growing global health concern. Recent literature indicates a prominent role of glucagon-like peptide-1 (GLP-1) in glucose metabolism and food intake. The synergistic action of GLP-1 in the gut and brain is responsible for its satiety-inducing effect, suggesting that upregulation of active GLP-1 levels could be an alternative strategy to combat obesity.
View Article and Find Full Text PDFFood Funct
April 2021
Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
Consumption of milk-derived whey proteins has been demonstrated to have insulin-sensitizing effects in mice and humans, in part through the generation of bioactive whey peptides. While whey peptides can prevent insulin resistance in vitro, it is unclear whether consumption of whey peptides can prevent obesity-induced metabolic dysfunction in vivo. We sought to determine whether whey peptides consumption can protect from high fat (HF) diet-induced obesity and dysregulation of glucose homeostasis.
View Article and Find Full Text PDFFoods
April 2020
Department of Chemical Engineering, University of Granada, 18071 Granada, Spain.
The influence of the carbohydrate-based wall matrix (glucose syrup, GS, and maltodextrin, MD21) and the storage temperature (4 °C or 25 °C) on the oxidative stability of microencapsulated fish oil was studied. The microcapsules (ca. 13 wt% oil load) were produced by spray-drying emulsions stabilized with whey protein hydrolysate (WPH), achieving high encapsulation efficiencies (>97%).
View Article and Find Full Text PDFJ Nutr Biochem
June 2020
Food and Nutrition Program, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil. Electronic address:
Notwithstanding the fact that dietary branched-chain amino acids (BCAAs) have been considered to be a cause of insulin resistance (IR), evidence indicates that BCAA-rich whey proteins (WPs) do not lead to IR in animals consuming high-fat (HF) diets and may instead improve glucose homeostasis. To address the role of BCAA-rich WP as dietary protein in IR and inflammatory response, we fed C57BL/6J mice either high-fat (HF) or low-fat (LF) diets formulated with moderate protein levels (13% w/w) of either WP or hydrolyzed WP (WPH) and compared them with casein (CAS) as a reference. The muscle and plasma free amino acid profiles, inflammatory parameters and glycemic homeostasis were examined.
View Article and Find Full Text PDFSilkworms are useful for evaluating substances that suppress postprandial hyperglycemia by oral administration. In this study, orally administered whey protein hydrolysate (WPH), obtained by enzymatic treatment of whey protein, suppressed sucrose-induced hyperglycemia in silkworms in a dose-dependent manner. WPH also inhibited glucose-induced hyperglycemia in silkworms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!