Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson's disease.

Antioxid Redox Signal

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Published: July 2011

Parkinson's disease is one of the major neurodegenerative disorders. Neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can cause Parkinson's disease-like symptoms and biochemical changes in humans and animals. Hydrogen sulfide (H(2)S) has been shown to protect neurons. The goal of this study was to examine the effects of inhaled H(2)S in a mouse model of Parkinson's disease induced by MPTP. Male C57BL/6J mice received MPTP at 80 mg/kg and breathed air with or without 40 ppm H(2)S for 8 h/day for 7 days. Administration of MPTP induced movement disorder and decreased tyrosine hydroxylase (TH)-containing neurons in the substantia nigra and striatum in mice that breathed air. Inhalation of H(2)S prevented the MPTP-induced movement disorder and the degeneration of TH-containing neurons. Inhaled H(2)S also prevented apoptosis of the TH-containing neurons and gliosis in nigrostriatal region after administration of MPTP. The neuroprotective effect of inhaled H(2)S after MPTP administration was associated with upregulation of genes encoding antioxidant proteins, including heme oxygenase-1 and glutamate-cysteine ligase. These observations suggest that inhaled H(2)S prevents neurodegeneration in a mouse model of Parkinson's disease induced by MPTP, potentially via upregulation of antioxidant defense mechanisms and inhibition of inflammation and apoptosis in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118610PMC
http://dx.doi.org/10.1089/ars.2010.3671DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
inhaled h2s
16
movement disorder
12
mouse model
12
model parkinson's
12
th-containing neurons
12
hydrogen sulfide
8
prevents neurodegeneration
8
disease induced
8
induced mptp
8

Similar Publications

Healthcare utilization and costs for patients with Parkinson's disease in Taiwan.

BMC Neurol

January 2025

Department of Public Health, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.

Background: Parkinson's disease (PD) exerts a considerable burden on the elderly. Studies on long-term costs for Parkinson's disease patients in Taiwan are not available.

Objectives: This study aims to examine the medical resource utilization and medical costs including drug costs for PD patients in Taiwan over up to 15 years of follow-up.

View Article and Find Full Text PDF

Background: Stigma significantly impacts individuals with Parkinson's disease (PD) and their caregivers, exacerbating social isolation, psychological distress, and reducing quality of life (QoL). Although considerable research has been conducted on PD's clinical aspects, the social and emotional challenges, like stigma, remain underexplored. Addressing stigma is crucial for enhancing well-being, fostering inclusivity and improving access to care and support.

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

Space exploration and risk of Parkinson's disease: a perspective review.

NPJ Microgravity

January 2025

Department of Biological Science, Boise State University, Boise, ID, 83725, USA.

Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!