Thermal treatments of feedstock gases (e.g., C(2)H(4)/H(2)) used during carbon nanotube (CNT) synthesis result in the formation of a complex mixture of volatile organic compounds and polycyclic aromatic hydrocarbons. Some of these are likely important CNT precursors, while others are superfluous and possibly degrade product quality, form amorphous carbon, and/or contribute to growth termination. To simulate the effect of thermal treatment without this chemical complexity, we delivered trace amounts of individual hydrocarbons, along with ethylene and hydrogen, to a cold-wall atmospheric pressure reactor containing a locally heated metal catalyst (Fe on Al(2)O(3)). Using these compound-specific experiments, we demonstrate that many alkynes (e.g., acetylene, methyl acetylene, and vinyl acetylene) accelerate multiwalled CNT formation with this catalyst system. Furthermore, ethylene is required for enhanced CNT growth, suggesting that the alkyne and ethylene may react in concert at the metal catalyst. This presents a distinct CNT formation mechanism where the chemical precursors may be intact during C-C bond formation, such as in polymerization reactions, challenging the widely accepted hypothesis that precursors completely dissociate into C (or C(2)) units before "precipitating" from the metal. Armed with these mechanistic insights, we were able to form high-purity CNTs rapidly with a 15-fold improvement in yield, a 50% reduction in energetic costs, and order of magnitude reduction in unwanted byproduct formation (e.g., toxic and smog-forming chemicals and greenhouse gases).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn101842g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!