Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
African dust (AD) contributions to particulate matter (PM) levels may be reported by Member States to the European Commission during justification of exceedances of the daily limit value (DLV). However, the detection and subsequent quantification of the AD contribution to PM levels is complex, and only two measurement-based methods are available in the literature: the Spanish-Portuguese reference method (SPR), and the Tel Aviv University method (TAU). In the present study, both methods were assessed. The SPR method was more conservative in the detection of episodes (71 days identified as AD by SPR, vs 81 by TAU), as it is less affected by interferences with local dust sources. The mean annual contribution of AD was lower with the TAU method than with SPR (2.7 vs 3.5 ± 1.5 μg/m(3)). The SPR and TAU AD time series were correlated with daily aluminum levels (a known tracer of AD), as well as with an AD source identified by the Positive Matrix Factorization (PMF) receptor model. Higher r(2) values were obtained with the SPR method than with TAU in both cases (r(2) = 0.72 vs 0.56, y = 0.05x vs y = 0.06x with aluminum levels; r(2)=0.79 vs 0.43, y = 0.8x vs y = 0.4x with the PMF source). We conclude that the SPR method is more adequate from an EU policy perspective (justification of DLV exceedances) due to the fact that it is more conservative than the TAU method. Based on our results, the TAU method requires adaptation of the thresholds in the algorithm to refine detection of low-impact episodes and avoid misclassification of local events as AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es1022625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!