Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By first-principles theory we study the nearly free electron (NFE) states of carbon and boron nitride nanotubes. In addition to the well-known π bands, we found a series of one-dimensional (1D) NFE bands with on-axis spatial distributions, which resemble atomic orbitals projected onto a plane. These bands are 1D counterparts of the recently discovered superatom orbitals of 0D fullerenes. In addition to the previously reported lowest energy NFE state with the angular quantum number l = 0 corresponding to s atomic orbital character, we find higher energy NFE bands with l > 0 corresponding to the p, d, etc., orbitals. We show that these atom-like states of nanotubes originate from the many-body screening, which is responsible for the image potential of the parent two-dimensional (2D) graphene or BN sheets. With a model potential that combines the short-range exchange-correlation and the long-range Coulomb interactions, we reproduce the energies and radial wave function profiles of the NFE states from the density functional theory calculations. When the nanotube radius exceeds the radial extent on NFE states, the NFE state energies converge to those of image potential states of the parent 2D molecular sheets. To explore possible applications in molecular electronics that take advantage of the NFE properties of nanotube building blocks, we investigate the modification of NFE states by transverse electric fields, alkali metal encapsulation, and lateral and concentric nanotube dimerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl1023854 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!