trans-Fatty acid isomers in two sesame (Sesamum indicum L.) seed byproducts under processing.

J Agric Food Chem

Laboratory of Biochemistry, UR03/ES08 "Human Nutrition and Metabolic Disorders", Faculty of Medicine, 5019 Monastir, Tunisia.

Published: December 2010

The present study has been inspired by the growing need for rigorously controlling the nutritional quality and safety of food products. The impact of application in the food industry on fatty acids composition, trans-fatty acids (TFAs), and conjugated linoleic acid (CLA) profiles were investigated in a highly consumed candy byproduct of sesame seed (chamia) in comparison to fresh sesame seed oil (SSO) and heated SSO under simulated frying experiments. The effect of treatment on SSO was studied by determining the TFA and CLA changes. Results showed significant differences between the two byproducts in TFA and CLA amounts. Total TFAs were found to be significantly higher in chamia than fresh SSO (1.31 versus 0.066%, respectively; p < 0.05) and even higher than all heated SSO from 2 to 10 h at 180 °C (1.31 versus 0.33%, respectively; p < 0.05). A significant linear relationship was found between trans-monounsaturated fatty acid (MUFA), trans-polyunsaturated fatty acid (PUFA), and total TFA and the time of processing, with a correlation coefficient (R(2)) greater than 0.9 for TFA and PUFA, with a higher correlation assigned to PUFA (r = 0.988; p < 0.001), followed by TFA (r = 0.959; p < 0.01) and MUFA (r = 0.844; p < 0.05). Principal component analysis of the fatty acid (FA) profiles showed discrimination between chamia and both fresh and heated SSO. A high stability of SSO against isomerization reactions as compared to their chamia sample counterpart has been noted. These findings suggest that the food industry engenders relatively higher changes in fatty acid configurations than the frying process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf102621cDOI Listing

Publication Analysis

Top Keywords

fatty acid
16
heated sso
12
food industry
8
sesame seed
8
tfa cla
8
chamia fresh
8
131 versus
8
sso
7
fatty
5
acid
5

Similar Publications

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!