A method for detecting undervalued resources with application to breeding birds.

Ecol Appl

School of Environment and Natural Resources, Ohio State University, 2021 Coffey Road, 210 Kottman Hall, Columbus, Ohio 43210, USA.

Published: October 2010

Anthropogenic changes to ecosystems can decouple habitat selection and quality, a phenomenon well illustrated by ecological traps in which individuals mistakenly prefer low-quality habitats. Less recognized is the possibility that individuals might fail to select high-quality habitat because of the absence of some appropriate cue. This incorrect assessment of resource quality can lead to relatively high-quality resources being undervalued, whereby they support fewer individuals than optimal. We developed a habitat selection model to predict the expected patterns in patch-level density, fitness, and individual quality derived from either accurate assessment of habitat quality or from undervaluing of habitat patches (i.e., quality is not correctly assessed). Unlike previous habitat selection models, we explicitly and simultaneously incorporated variation in both individual and habitat quality into our estimates of realized fitness. Although multiple mechanisms can reduce patch-average density, fitness, and individual quality in less preferred patches, only undervaluation results in the occupation of higher-quality territories by similar-quality individuals in less preferred vs. preferred patches. We then looked for evidence of undervaluation in our seven-year data set of Acadian Flycatchers (Empidonax virescens) occupying forests in urbanizing landscapes in Ohio, USA. We suspected that forests within more urban landscapes may be undervalued in our study system because (1) urban forests typically support lower densities of Neotropical migratory birds than rural forests and (2) anthropogenic disturbance and habitat alterations are likely to result in mismatches between cues typically used in habitat selection and actual habitat quality. In contrast to our predictions, field data suggest that urban forests are not undervalued. Our work not only expands upon previous habitat selection models by considering undervaluation, but also demonstrates how predictions derived from our model can be tested using a long-term empirical data set.

Download full-text PDF

Source
http://dx.doi.org/10.1890/09-1295.1DOI Listing

Publication Analysis

Top Keywords

habitat selection
20
habitat quality
12
habitat
11
quality
8
density fitness
8
fitness individual
8
individual quality
8
previous habitat
8
selection models
8
preferred patches
8

Similar Publications

Over the last few decades, climate change in Svalbard (European Arctic) has led to the emergence and growth of periglacial coastal lagoons in the place of retreating glaciers. In these emerging water bodies, new ecosystems are formed, consisting of elements presumably entering the lagoon from the melting glacier, the surrounding tundra water bodies and the coastal ocean. The data presented here were collected from an emerging lagoon in the western region of Spitsbergen, Svalbard, situated between the retreating Eidembreen Glacier and Eidembukta Bay in 2022-2023.

View Article and Find Full Text PDF

Background: The normal values of the complete blood count are part of the foundational medical knowledge that is seldom questioned due to their well-established nature. These normal values are critical for optimal physiological function while minimizing the harmful consequences of an excessive number of blood cells. Thus, they represent an evolutionary trade-off likely shaped by natural selection if they significantly influence individual fitness and exhibit heritability.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!