Digital dentistry: innovation for restorative treatment.

Compend Contin Educ Dent

School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.

Published: December 2010

The evolution of digital technology and computer-aided design/computer-aided manufacture (CAD/CAM) systems are creating exciting opportunities for improving the delivery of restorative dentistry. Digital systems now offer the opportunity to avoid traditional, analog impressions, including the usual impression materials, time, and handling limitations associated with them. Intraoral scanners have the potential to offer excellent accuracy with a more comfortable experience for the patient and more efficient workflow for the office.

Download full-text PDF

Source

Publication Analysis

Top Keywords

digital dentistry
4
dentistry innovation
4
innovation restorative
4
restorative treatment
4
treatment evolution
4
evolution digital
4
digital technology
4
technology computer-aided
4
computer-aided design/computer-aided
4
design/computer-aided manufacture
4

Similar Publications

The Effect of Plaque Detectors on the Color Stability of Two Types of Restorative Materials.

J Esthet Restor Dent

January 2025

Department of Biomedical and Neuromotor Science (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.

Objective: To investigate the color stability of a one-shade resin-based composite material (RC) and a glass-ionomer cement (GIC) after staining with plaque detectors (PDs) with different formulations and delivery forms.

Materials And Methods: Rectangular-shaped specimens (7 × 3 × 2 mm) were produced with RC (Venus Diamond One, Kulzer) and GIC (Fujy IX GP, GC) (n = 30). Further, the following PDs were used on the specimens: (1) tablets (T; Plaq-Search, TePe); (2) mouthwash (M; Plaque Agent, Miradent); and (3) light-curing liquid (L; Plaque test, Ivoclar).

View Article and Find Full Text PDF

This in-vitro study assessed the influence of the shade of human teeth on the transmission of near-infrared light. A total of 40 teeth were used. After cleaning the root surface and removing cementum, the teeth were sectioned into slices 3 mm thick, with each comprising a portion of the crown (enamel-dentine (ED)) and of the root (dentine only).

View Article and Find Full Text PDF

Accuracy of full arch scans performed with nine different scanning patterns- an in vitro study.

Clin Oral Investig

January 2025

Department of Prosthetic Dentistry, LMU University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.

Objective: Evaluation of the accuracy of direct digitization of maxillary scans depending on the scanning strategy.

Materials And Methods: A maxillary model with a metal bar as a reference structure fixed between the second molars was digitized using the CEREC Primescan AC scanner (N = 225 scans). Nine scanning strategies were selected (n = 25 scans per strategy), differing in scan area segmentation (F = full jaw, H = half jaw, S = sextant) and scan movement pattern (L = linear, Z = zig-zag, C = combined).

View Article and Find Full Text PDF

Influence of two different printing methods on the accuracy of full-guided implant insertion - a laboratory study in undergraduate dental students.

BDJ Open

January 2025

Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. Dr. Bernd Lethaus), University Hospital Tübingen, Eberhard Karls Universität Tübingen, Osianderstr. 2-8, D-72076, Tübingen, Germany.

Objectives: The aim of the present study was to compare the accuracy of fully guided implant insertion in vitro achieved by two fabrication methods in a cohort of undergraduates. We hypothesized that both methods achieve a comparable accuracy.

Methods: Surface scans and cone beam computed tomography images of 48 mandibular models were matched.

View Article and Find Full Text PDF

Adaptation of maxillary removable partial denture frameworks fabricated with a direct digital workflow: A randomized crossover clinical trial.

J Dent

January 2025

Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Stomatology, Fengcheng Hospital of Fengxian District, Shanghai, 201418, China. Electronic address:

Objectives: To compare the adaptation of maxillary removable partial denture (RPD) frameworks fabricated through direct digital workflows with that of traditional cast frameworks and indirect digital frameworks.

Methods: The workflow for fabricating the digital cobalt-chromium framework encompassed intraoral scanning (IOS) using Trios 3, computer-aided survey and design, and subsequently either the lost-wax technique from a printed resin framework pattern (Framework B) or direct selective laser melting (SLM) (Framework C). The traditional cast framework (Framework A) was selected as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!