Cerebral autoregulation controls cerebral blood flow under changing cerebral perfusion pressure. Standards for measurement and analysis of dynamic cerebral autoregulation (dCA) are lacking. In this study, dCA reproducibility, quantified by intraclass correlation coefficient, is evaluated for different methodological approaches of transfer function analysis (TFA) and compared with multimodal pressure flow analysis (MMPF). dCA parameters were determined in 19 healthy volunteers during three 15-min lasting epochs of spontaneous breathing. Every spontaneous breathing epoch was followed by 5 min of paced breathing at 6 cycles/min. These six measurements were performed in both a morning and an afternoon session. Analysis compared raw data pre-processing by mean subtraction versus smoothness priors detrending. The estimation of spectral density was either performed by averaging of subsequent time windows or by smoothing the spectrum of the whole recording. No significant influence of pre-processing and spectral estimation on dCA parameters was found. Therefore, there seems to be no need to prescribe a specific signal-processing regime. Poor reproducibility of gain and phase was found for TFA as well as for MMPF. Based on reproducibility, no preference can be made for morning versus afternoon measurements, neither for spontaneous versus paced breathing. Finally, reproducibility results are not in favour of TFA or MMPF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993898PMC
http://dx.doi.org/10.1007/s11517-010-0706-yDOI Listing

Publication Analysis

Top Keywords

cerebral autoregulation
12
dynamic cerebral
8
dca parameters
8
spontaneous breathing
8
paced breathing
8
reproducibility
5
autoregulation signal
4
signal processing
4
processing methods
4
methods influence
4

Similar Publications

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.

View Article and Find Full Text PDF

Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.

View Article and Find Full Text PDF

Unlabelled: The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!