Carotenoids are liposoluble pigments widely distributed in nature. More than 750 carotenoids are isolated from natural sources, but only a few kinds are used industrially. The production of carotenoid by microorganisms is to be expected, but few carotenoids originate from living things on land. And there is little knowledge about carotenoid-producing microorganisms in the oceans. The possibility still exists of discovering new carotenoid-producing microorganisms. Sunlight is very strong in subtropical regions. The surface of the sea and coral reefs in these regions is a severe environment for growth of microorganisms. While such conditions produce reactive oxygen species, the continuing strong irradiation can also lead to damaging and lethal photo-oxidative reactions. Many undiscovered microorganisms may possess protective mechanisms such as anti-oxidative activities for survival in this environment. This study focused on marine microorganisms inhabiting coral reefs in the Okinawa area, especially carotenoid-producing bacteria possessing anti-oxidative activities. Many carotenoid-producing microorganisms were collected from subtropical ocean areas (a total of 334 strains of pigmented microorganisms), and the chemical composition, some culture conditions and genetic characteristics of the carotenoids from these microorganisms were examined. Furthermore, similar research was performed using some creatures from the ocean surrounding Kochi Prefecture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/yakushi.130.1445 | DOI Listing |
Heliyon
January 2025
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Makkah, 23955, Saudi Arabia.
Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
April 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
β-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural β-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of β-carotene cannot satisfy the pursuit for natural products of consumers. The β-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness.
View Article and Find Full Text PDFCurr Opin Biotechnol
June 2024
Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea. Electronic address:
Carotenoids are natural pigments that exhibit a wide range of red, orange, and yellow colors and are extensively used in the food, nutraceuticals, cosmetics, and aquaculture industries. While advances in systems metabolic engineering have established a foundation for constructing carotenoid-producing microbial cell factories at a laboratory scale, translating these technologies to industrial scales remains a big challenge. Moreover, there is a need to devise cost-effective methods for downstream processing and purification of carotenoids.
View Article and Find Full Text PDFMicroorganisms
November 2023
Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia.
Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids.
View Article and Find Full Text PDFMicroorganisms
November 2023
Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
The novel bacterial strain MBLB1776 was isolated from marine mud in Uljin, the Republic of Korea. Cells were Gram-positive, spore-forming, non-motile, and non-flagellated rods. Growth was observed at a temperature range of 10-45 °C, pH range of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!