Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding.

J Neurosci

Department of Psychology, Center for Learning and Memory, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA.

Published: November 2010

Episodic memory is characterized by rapid formation of new associations that bind information within individual episodes. A powerful aspect of episodic memory is the ability to flexibly apply and recombine information from past experience to guide new behavior. A critical question for memory research is how medial temporal lobe (MTL) and prefrontal cortex (PFC), regions implicated in rapid within-episode binding, further support cross-episode binding in service of mnemonic flexibility. We set to answer this question using an associative inference task in humans that required rapid binding of information across overlapping experiences (AB, BC) to enable successful transfer to novel test probes (AC). Within regions predicting subsequent associative memory for directly learned associations, encoding activation in MTL, including hippocampus and parahippocampal cortex, uniquely predicted success on novel transfer trials both within and across participants, consistent with an integrative encoding mechanism where overlapping experiences are linked into a combined representation during learning. In contrast, during retrieval, PFC activation predicted trial-by-trial transfer success while MTL predicted transfer performance across participants. Moreover, increased MTL-PFC coupling was observed during novel transfer trials compared with retrieval of directly learned associations. These findings suggest that inferential processes support transfer of rapidly acquired experiences to novel events during retrieval where multiple memories are recalled and flexibly recombined in service of successful behavior. Together, these results demonstrate distinct encoding and retrieval mechanisms that support mnemonic flexibility, revealing a unique role for MTL regions in cross-episode binding during encoding and engagement of interactive MTL-PFC processes during flexible transfer at test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633616PMC
http://dx.doi.org/10.1523/JNEUROSCI.3250-10.2010DOI Listing

Publication Analysis

Top Keywords

cross-episode binding
12
medial temporal
8
temporal lobe
8
prefrontal cortex
8
episodic memory
8
mnemonic flexibility
8
overlapping experiences
8
directly learned
8
learned associations
8
novel transfer
8

Similar Publications

Retrieving existing memories before new learning can lead to retroactive facilitation. Three experiments examined whether interpolated retrieval is associated with retroactive facilitation and memory interdependence that reflects integrative encoding. Participants studied two lists of cue-response word pairs that repeated across lists (A-B, A-B), appeared in list 1 (A-B, -), or included the same cues with changed responses in each list (A-B, A-C).

View Article and Find Full Text PDF

Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks-both of which require encoding associations that span multiple episodes-in a developmental sample ranging from ages 6 to 30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body.

View Article and Find Full Text PDF

Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding.

J Neurosci

November 2010

Department of Psychology, Center for Learning and Memory, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA.

Episodic memory is characterized by rapid formation of new associations that bind information within individual episodes. A powerful aspect of episodic memory is the ability to flexibly apply and recombine information from past experience to guide new behavior. A critical question for memory research is how medial temporal lobe (MTL) and prefrontal cortex (PFC), regions implicated in rapid within-episode binding, further support cross-episode binding in service of mnemonic flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!