Occupational exposure to chromium (Cr) compounds has been shown to cause serious toxic and carcinogenic effects. The skin is an important target for the compounds in industrially exposed Cr workers. c-Jun NH(2)-terminal kinase (JNK) regulates cell proliferation, apoptosis, and differentiation. This protein's effects on cellular response depend upon the cell type and stimuli. The mechanisms by which hexavalent chromium (Cr(VI)) leads to apoptosis in the skin are unclear at present. The aim of this study is to examine whether JNK regulates apoptosis in Cr(VI)-exposed mouse JB6 epidermal cells. The present study showed that Cr(VI) induced apoptotic cell death through JNK activation. The blockage of JNK by small interference RNA (si-RNA) transfection suppressed Cr(VI)-induced apoptotic cell death with the concomitant downregulation of antiapoptotic Bcl-2 family proteins, mitochondrial membrane depolarization (Δψm), caspase activation, and poly (ADP-ribose) polymerase cleavage. However, inhibition of c-Jun expression by si-RNA transfection enhanced cytotoxicity, which corresponded to increasing apoptosis and Δψm. This phenomenon is associated with p53 activation caused by increasing reactive oxygen species (ROS) levels because of the downregulation of superoxide dismutase expression in si-c-Jun-transfected cells. Taken together, Cr(VI) induces apoptosis via JNK-mediated signaling, whereas c-Jun activation acts as an inhibitor of apoptotic signaling. Additionally, ROS generated by Cr(VI) is a pivotal regulator of JNK.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023565 | PMC |
http://dx.doi.org/10.1093/toxsci/kfq335 | DOI Listing |
J Colloid Interface Sci
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China. Electronic address:
Chemotherapy remains the primary treatment modality for breast cancer (BCa) patients. However, chemoresistance commonly arises in clinical settings, contributing to poor prognosis. The development of chemoresistance is a dynamic and complex process involving the activation of oncogenes and inactivation of tumor suppressor genes.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.
The MAP2K7 signaling pathway activates the c-Jun NH2-terminal protein kinase (JNK) in response to stress signals, such as inflammatory cytokines, osmotic stress, or genomic damage. While there has been interest in inhibiting JNK due to its involvement in inflammatory processes and cancer, there is increasing focus on developing MAP2K7 inhibitors to enhance specificity when MAP2K7 activation is associated with disease progression. Despite some progress, further research is needed to fully comprehend the role of MAP2K7 in cancer and assess the potential use of kinase inhibitors in cancer therapy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Redox Biol
November 2024
State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China. Electronic address:
Toxins (Basel)
August 2024
Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by , is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!