The Toll signaling pathway, an essential innate immune response in invertebrates, is mediated via the serine protease cascade. Once activated, the serine proteases are irreversibly inactivated by serine protease inhibitors (serpins). Recently, we identified three serpin-serine protease pairs that are directly involved in the regulation of Toll signaling cascade in a large beetle, Tenebrio molitor. Of these, the serpin SPN48 was cleaved by its target serine protease, Spätzle-processing enzyme, at a noncanonical P1 residue of the serpin's reactive center loop. To address this unique cleavage, we report the crystal structure of SPN48, revealing that SPN48 exhibits a native conformation of human antithrombin, where the reactive center loop is partially inserted into the center of the largest β-sheet of SPN48. The crystal structure also shows that SPN48 has a putative heparin-binding site that is distinct from those of the mammalian serpins. Ensuing biochemical studies demonstrate that heparin accelerates the inhibition of Spätzle-processing enzyme by a proximity effect in targeting the SPN48. Our finding provides the molecular mechanism of how serpins tightly regulate innate immune responses in invertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020765 | PMC |
http://dx.doi.org/10.1074/jbc.M110.144006 | DOI Listing |
Viruses
December 2024
Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32608, USA.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.
View Article and Find Full Text PDFViruses
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.
Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK.
Prostate cancer, a leading cause of cancer-related mortality among men, often presents challenges in accurate diagnosis and effective monitoring. This systematic review explores the potential of exosomal biomolecules as noninvasive biomarkers for the diagnosis, prognosis, and treatment response of prostate cancer. A thorough systematic literature search through online public databases (Medline via PubMed, Scopus, and Web of science) using structured search terms and screening using predefined eligibility criteria resulted in 137 studies that we analyzed in this systematic review.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia.
The role of the plasminogen activation system is to regulate the activity of the extracellular protease plasmin. It comprises the urokinase plasminogen activator (uPA), a specific extracellular protease which activates plasminogen, its inhibitor PAI1, and the urokinase plasminogen activator receptor, uPAR, which localizes the urokinase activity. The plasminogen activation system is involved in tissue remodeling through extracellular matrix degradation, and therefore participates in numerous physiological and pathological processes, which make it a potential biomarker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!