Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3β, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009859PMC
http://dx.doi.org/10.1074/jbc.M110.170704DOI Listing

Publication Analysis

Top Keywords

imprinted loci
16
dna methylation
12
methylation imprinted
12
stem cells
12
phosphatidylinositol 3-kinase
8
glycogen synthase
8
synthase kinase-3
8
kinase-3 gsk-3
8
gsk-3α gsk-3β
8
signal transduction
8

Similar Publications

Timely and accurate translation of maternal mRNA is essential for oocyte maturation and early embryonic development. Previous studies have highlighted the importance of Primordial Germ cell 7 (PGC7) as a maternal factor in maintaining DNA methylation of maternally imprinted loci in zygotes. However, it is still unknown whether PGC7 is involved in the regulation of Maternal mRNA Translation.

View Article and Find Full Text PDF

Cognitive benefits of folic acid supplementation during pregnancy track with epigenetic changes at an imprint regulator.

BMC Med

December 2024

School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.

Background: The human ZFP57 gene is a major regulator of imprinted genes, maintaining DNA methylation marks that distinguish parent-of-origin-specific alleles. DNA methylation of the gene itself has shown sensitivity to environmental stimuli, particularly folate status. However, the role of DNA methylation in ZFP57's own regulation has not been fully investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The lncRNA Crossfirre is an X-linked gene that is transcribed opposite to another lncRNA called Firre, and together with Dxz4, they form significant chromatin structures specific to inactive X chromosomes.
  • Researchers carried out large-scale knockout studies of Crossfirre, Firre, and Dxz4 to understand their in vivo roles, finding that although these loci have unique epigenetic traits, they are not crucial for X chromosome inactivation processes.
  • The study reveals that Crossfirre influences the regulation of autosomal genes, but only in conjunction with Firre, and includes a phenotyping analysis that highlights various knockout and sex-specific outcomes.
View Article and Find Full Text PDF

Introduction: Disturbed paternal epigenetic status of imprinted genes has been observed in infertility and recurrent spontaneous abortions. Shallow placentation has been associated with early-onset preeclampsia. Hence, the present study aimed to investigate the methylation patterns of imprinted genes involved in placental development, in the spermatozoa of partners of women experiencing preeclampsia.

View Article and Find Full Text PDF

Distinguishing genetic alterations versus (epi)mutations in Silver-Russell syndrome and focus on the IGF1R gene.

J Clin Endocrinol Metab

October 2024

Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Article Synopsis
  • Silver-Russell Syndrome (SRS) is a disorder that leads to growth failure, characteristic physical features, and feeding issues, with significant genetic causes remaining unclear in many cases.
  • The study aimed to assess the genetic variants in undiagnosed SRS patients and determine if (epi)genetic patients show distinct characteristics compared to genetic patients.
  • Findings revealed that only 9.1% of patients had identifiable pathogenic variants, emphasized body asymmetry as a key trait in (epi)genetic SRS, and recommended including IGF1R sequencing in the diagnostic process for SRS.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!