We describe direct polymer attachment to hydrogen and deuterium-terminated diamond (HTD and DTD) surfaces using a radical initiator (di-tert-amyl peroxide, DTAP), a reactive monomer (styrene) and a crosslinking agent (divinylbenzene, DVB) to create polystyrene encapsulated diamond. Chemisorbed polystyrene is sulfonated with sulfuric acid in acetic acid. Surface changes were followed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). Finally, both polystyrene-modified DTD and sulfonated styrene-modified DTD were used in solid phase extraction (SPE). Percent recovery and column capacity were investigated for both phenyl (polystyrene) and sulfonic acid treated polystyrene SPE columns. These diamond-based SPE supports are stable under basic conditions, which is not the case for silica-based SPE supports.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2010.10.014DOI Listing

Publication Analysis

Top Keywords

solid phase
8
phase extraction
8
spe supports
8
direct modification
4
modification hydrogen/deuterium-terminated
4
hydrogen/deuterium-terminated diamond
4
diamond particles
4
particles polymers
4
polymers form
4
form reversed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!