We showed previously that murine naive CD4(+) T cells and T(H)1 cell clones express the beta2-adrenergic receptor (β(2)AR), while T(H)2 cell clones do not. We report here that naive CD4(+) T cells that differentiated for 1-5 days under T(H)1 driving conditions increased β(2)AR gene expression, while cells cultured under T(H)2 driving conditions decrease β(2)AR gene expression. Chromatin immunoprecipitation revealed that the increase in β(2)AR gene expression in T(H)1 cells is mediated by an increase in histone 3 (H3) and H4 acetylation, as well as an increase in histone 3 lysine 4 (H3K4) methylation. Conversely, the decrease in β(2)AR gene expression in T(H)2 cells is mediated by a decrease in H3 and H4 acetylation and a decrease in H3K4 methylation, as well as an increase H3K9 and H3K27 methylation. The histone changes could be detected as early as 3 days of differentiating conditions. Genomic bisulfite sequencing showed that the level of methylated CpG dinucleotides within the promoter of the β(2)AR gene was increased in T(H)2 cells as compared to naive and T(H)1 cells. Collectively, these results suggest that epigenetic mechanisms mediate maintenance and repression, respectively, of the β(2)AR gene expression in T(H)1- and T(H)2-driven cells, providing a potential mechanism by which the level of β(2)AR expression might be modulated pharmacologically within immune cells and other cell types in which the expression profile may change during a disease process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073579 | PMC |
http://dx.doi.org/10.1016/j.bbi.2010.10.019 | DOI Listing |
Genome
January 2025
Damietta University Faculty of Science, New Damietta, Damietta, Egypt;
Polyamine oxidase (PAOs) are enzymes associated with polyamine catabolism and play important roles in growth and development and stress tolerance of plants. In the present study, genome-wide discovery and analysis of the PAO family in sorghum was done utilizing model PAO of Arabidopsis. Six PAO genes were found using publicly available genomic data.
View Article and Find Full Text PDFHepatology
January 2025
Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.
View Article and Find Full Text PDFJ Hered
January 2025
Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, Copenhagen, 1353, Denmark.
The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.
A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.
View Article and Find Full Text PDFClin Cancer Res
January 2025
ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!