Platinum nanoparticles (Pt-NPs) are known to possess anti-tumouric activity and the ability to scavenge superoxides and peroxides indicating that they can act as superoxide dismutase (SOD)/catalase mimetics. These potentials seem useful in the protection and/or amelioration of oxidative stress-associated pathologies, but, when they are combined with a therapeutic modality that depends upon the mediation of reactive oxygen species in cell killing induction, the effect of Pt-NPs might be questionable. Here, the effects of polyacrylic acid-capped Pt-NPs (nano-Pts) on hyperthermia (HT)-induced apoptosis and the underlying molecular mechanisms were investigated in human myelomonocytic lymphoma U937 and human cutaneous T-cell lymphoma HH cells. The results showed that the pre-treatment with nano-Pts significantly inhibited HT-induced apoptosis in a dose-dependent manner. Superoxide, but not peroxides, was suppressed to varying extents. All pathways involved in apoptosis execution were also negatively affected. The results reveal that the combination of nano-Pts and HT could result in HT-desensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2010.532494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!