The development of protein-based materials with diverse mechanical properties will facilitate the realization of a broad range of potential applications. The recombinant Drosophila melanogaster transcription factor Ultrabithorax self-assembles under mild conditions in aqueous buffers into extremely extensible materials. By controlling fiber diameter, both the mechanism of extension and the magnitude of the mechanical properties can be varied. Narrow Ultrabithorax fibers (diameter <10 μm) extend elastically, whereas the predominantly plastic deformation of wide fibers (diameter >15 μm) reflects the increase in breaking strain with increasing diameter, apparently due to a change in structure. The breaking stress/strain of the widest fibers resembles that of natural elastin. Intermediate fibers display mixed properties. Fiber bundles retain the mechanical properties of individual fibers but can withstand much larger forces. Controlling fiber size and generating fiber superstructures is a facile way to manipulate the mechanical characteristics of protein fibers and rationally engineer macroscale protein-based materials with desirable properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm1010992DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
protein fibers
8
transcription factor
8
factor ultrabithorax
8
protein-based materials
8
controlling fiber
8
properties
6
fibers
6
mechanical
5
size dictates
4

Similar Publications

Construction of Supramolecular Polymer Network Elastomers Based on Pillar[5]arene/Alkyl Chain Host-Guest Interactions.

ACS Macro Lett

January 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.

View Article and Find Full Text PDF

EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties.

J Phys Chem Lett

January 2025

Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.

Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.

View Article and Find Full Text PDF

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!