Vermicompost is a very important biofertilizer produced through the artificial cultivation of worms i.e. Vermiculture. Vermicompost is enriched with all beneficial soil bacteria and also contain many of the essential plant nutrients like N, P, K and micronutrients. It increases soil aeration, texture and jilt. In this work, study is being carried out to find out the effect of different fertilizers such as DAF, FYM and Vermicompost on various morphological parameters and on the in vitro growth of bacterial colonies and its diversity in relation to two important leguminous plants such as Pisum sp. and Cicer sp. Results showed that plant grown in Vermicompost pretreated soil exhibited maximum increase in all morphological parameters such as root length, shoot length, number of root branches, number of stem branches, number of leaves, number of flowers, number of pods and number of root nodules in four months sampling in comparison to untreated, FYM treated and DAP treated soils. Further in Vermicompost pretreated soil, number of N2 fixing bacterial colony was maximum and showed highest diversity indices (1.6 and 0.99 and 2.0 and 0.99 for Cicer sp. and Pisum sp. respectively) than FYM, DAP and untreated control. Thus not only does the Vermicompost stimulate plant growth but also it increases the N2 fixing bacterial population in soil and also its diversity.
Download full-text PDF |
Source |
---|
Food Res Int
December 2024
Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China. Electronic address:
J Environ Qual
November 2024
Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA.
Dryland agriculture in the Inland Pacific Northwest is challenged in part by rising input costs for seed, fertilizer, and agrichemicals; threats to water quality and soil health, including soil erosion, organic matter decline, acidification, compaction, and nutrient imbalances; lack of cropping system diversity; herbicide resistance; and air quality concerns from atmospheric emissions of particulate matter and greenhouse gases. Technological advances such as rapid data acquisition, artificial intelligence, cloud computing, and robotics have helped fuel innovation and discovery but have also further complicated agricultural decision-making and research. Meeting these challenges has promoted interest in (1) supporting long-term research that enables assessment of ecosystem service trade-offs and advances sustainable and regenerative approaches to agriculture, and (2) developing coproduction research approaches that actively engage decision-makers and accelerate innovation.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
The imperative need to produce safe foodstuffs using environmentally sustainable practices has highlighted the incorporation of legumes in human and animal diets as an emerging nutritional staple. Since legumes comprise a family of plants known to display an extensive agricultural diversity with significant bioactivities, we report herein the exploitation outcome of the nutritional and bio-functional content of hay, derived from the post-harvest aerial parts of eight novel-improved Greek cultivars belonging to the following six taxa: L., L.
View Article and Find Full Text PDFSci Rep
November 2024
Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Gatersleben, 06466, Seeland, Saxony-Anhalt, Germany.
Seed quality is the set of physical, genetic, and physiological characteristics, reflecting the overall germination potential. Maintaining an optimal seed quality is essential for agriculture and seed banks to preserve genetic diversity. Compared to conventional methods (e.
View Article and Find Full Text PDFPlant Dis
August 2024
University of Saskatchewan, Department of Plant Sciences, Agriculture Building, 51 Campus Dr., Saskatoon, Saskatchewan, Canada, S7N 5A2;
Bean leafroll virus (BLRV; Bean leafroll virus), a single-stranded RNA virus in the genus Luteovirus, is phloem-limited and primarily transmitted by aphids in a non-propagative, persistent manner (Rashed et al., 2018; Kidanemariam and Abraham, 2023). BLRV infects various legumes and has been reported from major pulse-growing regions worldwide (Agindotan et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!