Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid identification of enteropathogenic bacteria in stool samples is critical for clinical diagnosis and antimicrobial therapy. In this study, we describe the development of an approach that couples multiplex PCR with hybridization to a DNA microarray, to allow the simultaneous detection of the 10 pathogens. The microarray was synthesized with 20-mer oligonucleotide probes that were designed to be specific for virulence-factor genes of each strain. The detection limit for genomic DNA from a single strain was approximately 10 fg. In the presence of heterogeneous non-target DNA, the detection sensitivity of the array decreased to approximately 100 fg. We did not observe any non-specific hybridization. In addition, we successfully used this oligonucleotide-based DNA microarray to identify the causative agents in clinical stool samples from patients with food-borne enteritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-010-0119-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!