Triacylglycerol lipase from Pseudomonas cepacia and Fe(3)O(4) magnetic nanoparticles were encapsulated simultaneously within biomimetic silica through the catalysis of polyallylamine. The encapsulation efficiency reached 96% with an activity recovery of 51%. After 5 h at 37°C, the activities of the free and encapsulated lipases decreased by 77 and 16%, respectively. Addition of 10 and 15 mol% trimethylmethoxysilane to tetramethoxysilane during encapsulation doubled the lipase activity while inclusion of 50 and 60 mol% γ-(methacryloxypropyl)-trimethoxysilane tripled the activity. Thus, such encapsulation not only stabilized P. cepacia lipase but also could enhance the activity by varying silane additives.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-010-0451-1DOI Listing

Publication Analysis

Top Keywords

lipase pseudomonas
8
pseudomonas cepacia
8
biomimetic silica
8
activity
5
activity enhancement
4
enhancement stabilization
4
lipase
4
stabilization lipase
4
cepacia polyallylamine-mediated
4
polyallylamine-mediated biomimetic
4

Similar Publications

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).

View Article and Find Full Text PDF

Clinical aspects and characterization of Pseudomonas aeruginosa isolated from patients infected with SARS-CoV-2.

Microb Pathog

February 2025

Master's in Health Sciences, Universidade do Oeste Paulista/UNOESTE, Rua José Bongiovani, 700 - Cidade Universitária, CEP: 19050-920, Presidente Prudente, SP, Brazil; Program of Animal Science, Universidade do Oeste Paulista/UNOESTE, Rua José Bongiovani, 700 - Cidade Universitária, CEP: 19050-920, Presidente Prudente, SP, Brazil. Electronic address:

Aims: This study aimed to identify and characterize Pseudomonas aeruginosa isolates from patients infected and uninfected with SARS-CoV-2, focusing on their phenotypic characteristics and antimicrobial resistance profiles.

Main Methods: A total of 100 P. aeruginosa isolates were obtained from patients admitted to a hospital in Presidente Prudente, SP, in 2021.

View Article and Find Full Text PDF

Unravelling the potential of natural chelating agents in the control of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.

Eur J Med Chem

February 2025

LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal. Electronic address:

Iron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellular motility, hydrophobicity and protein composition of the bacterial surface. In this study, the antibiofilm activity of two natural iron chelating agents, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and maltol (3-hydroxy-2-methyl-4-pyrone), were investigated against Staphylococcus aureus and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!