Dynamic (time) characteristics of adaptive systems are analyzed. A common adaptive system with a finite frequency band (or a finite response time) is described as a dynamic constant time-delay system, where time delay is to be much shorter than the time of coherence radius transfer through an optical beam by a mean wind speed. The questions of coherent beam formation are considered with use of the reference source. The analytical calculation of the Strehl parameter is made on basis of the generalized Huygens-Kirchhoff principle. An adaptive system is considered where the correcting phase is calculated with the use of both its derivatives and the signal, as well as adaptive systems using different time-predicting algorithms of the correcting signal for future time points. The use of a predicted phase front of the correcting wave allows much longer time delays. The stronger the phase distortions in the optical wave, the higher the time gain in comparison with common (with constant time delay) adaptive systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.27.00A216 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ewing Marion Kauffman Foundation, Kansas City, MO 64110.
Research that better aligns policy, practice, and research communities is gaining momentum around the world. This includes engaged research strategies that bring partners, and their diverse perspectives and kinds of knowledge, together to shape research agendas with on-the-ground-needs and to create dynamic problem-solving processes. These approaches aim to generate more equitable and effective solutions to societal challenges.
View Article and Find Full Text PDFPLoS One
January 2025
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
View Article and Find Full Text PDFPLoS One
January 2025
School of Business, Anyang Normal University, Anyang, China.
The process of regional economic development is marked by a sustained exposure to external disturbances. In today's unpredictable and tumultuous global environment, such disturbances have become increasingly common, underlining the need to advance a region's economic resilience and foster adaptive mechanisms to handle environmental flux. Comparing the typical provinces in eastern, central, western and northeastern regions during the COVID-19 epidemic period, it found that the economic resilience performance of Henan Province, which is a representative of the central region, has the following characteristics.
View Article and Find Full Text PDFPLoS One
January 2025
School of Humanities, Ningbo University of Finance and Economics, Ningbo, Zhejiang, China.
Lightweight container technology has emerged as a fundamental component of cloud-native computing, with the deployment of containers and the balancing of loads on virtual machines representing significant challenges. This paper presents an optimization strategy for container deployment that consists of two stages: coarse-grained and fine-grained load balancing. In the initial stage, a greedy algorithm is employed for coarse-grained deployment, facilitating the distribution of container services across virtual machines in a balanced manner based on resource requests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!