RNA folding in living cells.

RNA Biol

Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.

Published: July 2011

RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073324PMC
http://dx.doi.org/10.4161/rna.7.6.13554DOI Listing

Publication Analysis

Top Keywords

rna folding
16
rna
9
living cells
8
folding living
4
cells rna
4
folding
4
folding essential
4
essential process
4
process underlying
4
underlying rna
4

Similar Publications

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

Designing RNA sequences that form a specific structure remains a challenge. Current computational methods often struggle with the complexity of RNA structures, especially when considering pseudoknots or restrictions related to RNA function. We developed DesiRNA, a computational tool for the design of RNA sequences based on the Replica Exchange Monte Carlo approach.

View Article and Find Full Text PDF

Mitochondrial ribosomes (mitoribosomes) are essential, and their function of synthesising mitochondrial proteins is universal. The core of almost all mitoribosomes is formed from a small number of long and self-folding rRNA molecules. In contrast, the mitoribosome of the apicomplexan parasite Toxoplasma gondii assembles from over 50 extremely short rRNA molecules.

View Article and Find Full Text PDF

Structural variants of AcrIIC5 inhibit Cas9 via divergent binding interfaces.

Structure

January 2025

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea. Electronic address:

CRISPR-Cas is a bacterial defense system that employs RNA-guided endonucleases to destroy invading foreign nucleic acids. Bacteriophages produce anti-CRISPR (Acr) proteins to evade CRISPR-Cas defense during the infection. AcrIIC5, a type II-C Cas9 inhibitor, exhibits unusual variations in the local backbone fold between its orthologs.

View Article and Find Full Text PDF

Simulating large molecular systems over long timescales requires force fields that are both accurate and efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational efficiency and accuracy of force fields, but they are still several orders of magnitude more expensive than established molecular mechanics (MM) force fields. Here, we propose Grappa, a machine learning framework to predict MM parameters from the molecular graph, employing a graph attentional neural network and a transformer with symmetry-preserving positional encoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!