Unliganded structure of human bisphosphoglycerate mutase reveals side-chain movements induced by ligand binding.

Acta Crystallogr Sect F Struct Biol Cryst Commun

Division of Molecular and Cellular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland.

Published: November 2010

AI Article Synopsis

Article Abstract

Erythrocyte-specific bisphosphoglycerate mutase is a trifunctional enzyme which modulates the levels of 2,3-bisphosphoglycerate (2,3-BPG) in red blood cells by virtue of its synthase and phosphatase activities. Low levels of erythrocyte 2,3-BPG increase the affinity of haemoglobin for oxygen, thus limiting the release of oxygen into tissues. 2,3-BPG levels in stored blood decline rapidly owing to the phosphatase activity of bisphosphoglycerate mutase, which is enhanced by a fall in pH. Here, the 1.94 Å resolution X-ray structure of bisphosphoglycerate mutase is presented, focusing on the dynamic nature of key ligand-binding residues and their interaction with the inhibitor citrate. Residues at the binding pocket are complete. In addition, the movement of key residues in the presence and absence of ligand is described and alternative conformations are explored. The conformation in which the ligand citrate would bind at the substrate-binding pocket is proposed, with discussion and representations of its orientation. The characterization of bisphosphoglycerate mutase-citrate interactions will provide a framework for the design of specific inhibitors of the phosphatase activity of this enzyme, which may limit the decline of 2,3-BPG in stored blood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001638PMC
http://dx.doi.org/10.1107/S1744309110035475DOI Listing

Publication Analysis

Top Keywords

bisphosphoglycerate mutase
16
stored blood
8
phosphatase activity
8
bisphosphoglycerate
5
unliganded structure
4
structure human
4
human bisphosphoglycerate
4
mutase
4
mutase reveals
4
reveals side-chain
4

Similar Publications

Article Synopsis
  • The study explores the role of 2,3-bisphosphoglycerate mutase (BPGM) in the kidney, highlighting its upregulation during acute kidney injury in both mice and humans.
  • Using a specialized mouse model, researchers found that BPGM is mainly located in the distal nephron and its knockout led to rapid kidney injury and structural damage after just four days.
  • The absence of BPGM disrupts crucial metabolic processes, elevating oxidative stress and inflammation while linking stress responses between different parts of the nephron, underscoring its importance in kidney function.
View Article and Find Full Text PDF

Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid.

Plant Cell

September 2024

Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants.

View Article and Find Full Text PDF

Soybean (Glycine max) is economically significant, but the mechanisms underlying its adaptation to simultaneous low phosphorus and salt stresses are unclear. We employed the Shennong 94-1-8 soybean germplasm to conduct a comprehensive analysis, integrating both physiochemical and transcriptomic approaches, to unravel the response mechanisms of soybean when subjected to simultaneous low phosphorus and salt stresses. Remarkably, the combined stress exhibited the most pronounced impact on the soybean root system, which led to a substantial reduction in total soluble sugar (TSS) and total soluble protein (TSP) within the plants under this treatment.

View Article and Find Full Text PDF

High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model. Twelve Sprague-Dawley rats were divided into control and HAPC groups.

View Article and Find Full Text PDF

Meta-analysis of transcriptomic profiles in reveals molecular pathway responses to different abiotic stresses.

Funct Plant Biol

February 2024

Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.

Article Synopsis
  • - Microalgae like Dunaliella tertiolecta are promising for sustainable metabolite production, but their responses to stress (like high light, nitrogen deficiency, and high salinity) can impact metabolite pathways.
  • - The study found that stress conditions led to downregulation of certain pathways (like light reactions and lipid metabolism) and identified key enzymes that were upregulated under these stresses.
  • - Results indicated a network of stress-specific gene modules, showing interconnectedness of photosynthesis and metabolism pathways, which could be useful for future research to optimize metabolite production in these microalgae.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!