Erythrocyte-specific bisphosphoglycerate mutase is a trifunctional enzyme which modulates the levels of 2,3-bisphosphoglycerate (2,3-BPG) in red blood cells by virtue of its synthase and phosphatase activities. Low levels of erythrocyte 2,3-BPG increase the affinity of haemoglobin for oxygen, thus limiting the release of oxygen into tissues. 2,3-BPG levels in stored blood decline rapidly owing to the phosphatase activity of bisphosphoglycerate mutase, which is enhanced by a fall in pH. Here, the 1.94 Å resolution X-ray structure of bisphosphoglycerate mutase is presented, focusing on the dynamic nature of key ligand-binding residues and their interaction with the inhibitor citrate. Residues at the binding pocket are complete. In addition, the movement of key residues in the presence and absence of ligand is described and alternative conformations are explored. The conformation in which the ligand citrate would bind at the substrate-binding pocket is proposed, with discussion and representations of its orientation. The characterization of bisphosphoglycerate mutase-citrate interactions will provide a framework for the design of specific inhibitors of the phosphatase activity of this enzyme, which may limit the decline of 2,3-BPG in stored blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001638 | PMC |
http://dx.doi.org/10.1107/S1744309110035475 | DOI Listing |
Acta Physiol (Oxf)
January 2025
Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany.
Plant Cell
September 2024
Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants.
View Article and Find Full Text PDFPhysiol Plant
March 2024
Soybean Research Institute, Shenyang Agricultural University, Shenyang, China.
Soybean (Glycine max) is economically significant, but the mechanisms underlying its adaptation to simultaneous low phosphorus and salt stresses are unclear. We employed the Shennong 94-1-8 soybean germplasm to conduct a comprehensive analysis, integrating both physiochemical and transcriptomic approaches, to unravel the response mechanisms of soybean when subjected to simultaneous low phosphorus and salt stresses. Remarkably, the combined stress exhibited the most pronounced impact on the soybean root system, which led to a substantial reduction in total soluble sugar (TSS) and total soluble protein (TSP) within the plants under this treatment.
View Article and Find Full Text PDFFront Physiol
February 2024
College of Medicine, Southwest Jiaotong University, Chengdu, China.
High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model. Twelve Sprague-Dawley rats were divided into control and HAPC groups.
View Article and Find Full Text PDFFunct Plant Biol
February 2024
Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!