Cytotoxic T lymphocytes (CTLs) suppress T cell responses directed against their antigens regardless of their own T cell receptor (TCR) specificity. This makes the use of CTLs promising for tolerance induction in autoimmunity and transplantation. It has been established that binding of the CTL CD8 molecule to the major histocompatibility complex (MHC) class I α3 domain of the recognizing T cell must be permitted for death of the latter cell to ensue. However, the signaling events triggered in the CTL by this molecular interaction in the absence of TCR recognition have never been clarified. Here we use single-cell imaging to study the events occurring in CTLs serving as targets for recognition by specific T cells. We demonstrate that CTLs actively respond to recognition by polarizing their cytotoxic granules to the contact area, releasing their lethal cargo, and vigorously proliferating. Using CTLs from perforin knockout (KO) mice and lymphocyte specific kinase (Lck) knockdown with specific small interfering RNA (siRNA), we show that the killing of the recognizing CD8 T cell is perforin dependent and is initiated by Lck signaling in the CTL. Collectively, these data suggest a novel mechanism in which the entire cascade generally triggered by TCR engagement is "hijacked" in CTLs serving as targets for T cell recognition without TCR ligation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035066 | PMC |
http://dx.doi.org/10.1182/blood-2010-05-283770 | DOI Listing |
Clin Transl Gastroenterol
December 2024
Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
December 2024
Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China.
This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA.
View Article and Find Full Text PDFCell Regen
December 2024
Guangzhou National Laboratory, Guangzhou, 510005, China.
Gastric cancer is one of the most common malignancies with poor prognosis. The use of organoids to simulate gastric cancer has rapidly developed over the past several years. Patient-derived gastric cancer organoids serve as in vitro models that closely mimics donor characteristics, offering new opportunities for both basic and applied research.
View Article and Find Full Text PDFDiscov Oncol
December 2024
School of Pharmacy, Shaoyang University, Shaoyang, 422000, Hunan, China.
Lung adenocarcinoma (LUAD) represents one of the most common subtypes of lung cancer with high rates of incidence and mortality, which contributes to substantial health and economic demand across the globe. Treatment today mainly consists of surgery, radiotherapy, and chemotherapy, but their efficacy in advanced stages is often suboptimal and emphasizes the clear need for new biomarkers and therapeutic targets. Using comprehensive bioinformatics analyses consisting of the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), immune infiltration analysis and functional enrichment analysis, and single-cell analysis, we examined the potential of keratin 18 (KRT18) as a candidate biomarker in advanced LUAD.
View Article and Find Full Text PDFVet Sci
December 2024
College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
African swine fever (ASF) has widely spread around the world in the last 100 years since its discovery. The African swine fever virus (ASFV) particles are made of more than 150 proteins, with the p17 protein encoded by the D117L gene serving as one of the major capsid proteins and playing a crucial role in the virus's morphogenesis and immune evasion. Thus, monoclonal antibody (mAb) targeting p17 is important for the research and detection of ASFV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!