Naegleria gruberi is a single-celled eukaryote best known for its remarkable ability to form an entire microtubule cytoskeleton de novo during its metamorphosis from an amoeba into a flagellate, including basal bodies (equivalent to centrioles), flagella and a cytoplasmic microtubule array. Our publicly available full-genome transcriptional analysis, performed at 20-minute intervals throughout Naegleria differentiation, reveals vast transcriptional changes, including the differential expression of genes involved in metabolism, signaling and the stress response. Cluster analysis of the transcriptional profiles of predicted cytoskeletal genes reveals a set of 55 genes enriched in centriole components (induced early) and a set of 82 genes enriched in flagella proteins (induced late). The early set includes genes encoding nearly every known conserved centriole component, as well as eight previously uncharacterized, highly conserved genes. The human orthologs of at least five genes localize to the centrosomes of human cells, one of which (here named Friggin) localizes specifically to mother centrioles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987438 | PMC |
http://dx.doi.org/10.1242/jcs.077453 | DOI Listing |
J Hazard Mater
January 2025
Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:
Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.
View Article and Find Full Text PDFMolecules
January 2025
Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
is a Gram-negative bacterium and human pathogen that is linked to various gastric diseases, including peptic ulcer disease, chronic gastritis, and gastric cancer. The filament of the flagellum is surrounded by a membranous sheath that is contiguous with the outer membrane. Proteomic analysis of isolated sheathed flagella from B128 identified the lipoprotein HP0135 as a potential component of the flagellar sheath.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Medical Genetics Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
Flagella are important protein structures on the cell surface of bacteria and the main appendage for bacterial swimming. Flagella play a crucial role in bacterial motility, chemotaxis, pathogenicity, and environmental sensing. With the development of microscopic tracking technology and flagellum visualization tools, new forms of flagellar motility and increasing roles of flagella in the physiological activities of bacteria have been discovered.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
Background: Asthenozoospermia (ASZ) accounts for about 20-40% of male infertility, and genetic factors, contributing to 30-40% of the causes of ASZ, still need further exploration. Radial spokes (RSs), a T-shaped macromolecular complex, connect the peripheral doublet microtubules (DMTs) to a central pair (CP), forming a CP-RS-DMT structure to regulate the beat frequency and amplitude of sperm flagella. To date, many components of RSs and their functions in human sperm flagella remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!