Human ether-a-go-go related gene (hERG) channel gating is associated with slow activation, yet the mechanistic basis for this is unclear. Here, we examine the effects of mutation of a unique glycine residue (G546) in the S4-S5 linker on voltage sensor movement and its coupling to pore gating. Substitution of G546 with residues possessing different physicochemical properties shifted activation gating by ∼-50 mV (with the exception of G546C). With the activation shift taken into account, the time constant of activation was also accelerated, suggesting a stabilization of the closed state by ∼1.6-4.3 kcal/mol (the energy equivalent of one to two hydrogen bonds). Predictions of the α-helical content of the S4-S5 linker suggest that the presence of G546 in wild-type hERG provides flexibility to the helix. Deactivation gating was affected differentially by the G546 substitutions. G546V induced a pronounced slow component of closing that was voltage-independent. Fluorescence measurements of voltage sensor movement in G546V revealed a slow component of voltage sensor return that was uncoupled from charge movement, suggesting a direct effect of the mutation on voltage sensor movement. These data suggest that G546 plays a critical role in channel gating and that hERG channel closing involves at least two independently modifiable reconfigurations of the voltage sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965951PMC
http://dx.doi.org/10.1016/j.bpj.2010.08.030DOI Listing

Publication Analysis

Top Keywords

voltage sensor
24
s4-s5 linker
12
sensor movement
12
herg channel
8
channel gating
8
slow component
8
voltage
6
sensor
6
gating
5
g546
5

Similar Publications

The big potassium (BK) channels remain open with a small limiting probability of ∼ 10 at minimal Ca and negative voltages < -100 mV. The molecular origin and functional significance of such "intrinsic opening" are not understood. Here we combine atomistic simulations and electrophysiological experiments to show that the intrinsic opening of BK channels is an inherent property of the vapor barrier, generated by hydrophobic dewetting of the BK inner pore in the deactivated state.

View Article and Find Full Text PDF

Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

Self-powered devices for human motion monitoring and energy harvesting have garnered widespread attention in recent research. In this work, we designed a honeycomb-structured triboelectric nanogenerator (H-TENG) using polyester cloth and Teflon tape, with aluminum foil as the conductive electrode. This design leverages the large surface area and flexibility of textiles, resulting in significant performance improvements.

View Article and Find Full Text PDF

Interfacial Work Function Modulation of Wide Bandgap Perovskite Solar Cell for Efficient Perovskite/CIGS Tandem Solar Cell.

Small Methods

January 2025

Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.

Wide-bandgap perovskite solar cells (PVSCs), a promising top-cell candidate for high-performance tandem solar cells, often suffer from larger open-circuit voltage (V) deficits as the bandgap increases. Surface passivation is a common strategy to mitigate these V deficits. However, understanding the mechanisms underlying the differences in passivation effects among various types of molecules remains limited, which is crucial for developing universal interface passivation strategies and guiding the design of passivation molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!