Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A brain-computer interface (BCI) provides a direct connection between the human brain and a computer. One type of BCI can be realized using steady-state visual evoked potentials (SSVEPs), resulting from repetitive stimulation. The aim of this study was the realization of an asynchronous SSVEP-BCI, based on canonical correlation analysis, suitable for the control of a 2-degrees of freedom (DoF) hand and elbow neuroprosthesis. To determine whether this BCI is suitable for the control of 2-DoF neuroprosthetic devices, online experiments with a virtual and a robotic limb feedback were conducted with eight healthy subjects and one tetraplegic patient. All participants were able to control the artificial limbs with the BCI. In the online experiments, the positive predictive value (PPV) varied between 69% and 83% and the false negative rate (FNR) varied between 1% and 17%. The spinal cord injured patient achieved PPV and FNR values within one standard deviation of the mean for all healthy subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/BMT.2010.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!