A newly synthesized azine-based receptor (L) is found to show remarkable specificity toward the Hg(2+) ion in aqueous media over other metal ions. Coordination of L to Hg(2+) induces a detectable change in color and a turn-on fluorescence response. Restricted C=N isomerization of the azine moieties in the excited state as well as the Photoinduced Electron Transfer (PET) involving the lone pair of electrons of N(1)/N(2) on coordination of L to the Hg(2+) ion account for the turn-on fluorescence response. This reagent could be used for imaging the accumulation of Hg(2+) ions in Epithelial cell line KB 31 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol102204rDOI Listing

Publication Analysis

Top Keywords

hg2+ ion
12
azine-based receptor
8
coordination hg2+
8
turn-on fluorescence
8
fluorescence response
8
hg2+
5
receptor recognition
4
recognition hg2+
4
ion crystallographic
4
crystallographic evidence
4

Similar Publications

Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks.

Comput Struct Biotechnol J

December 2024

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.

View Article and Find Full Text PDF

Simultaneous or separate detection of heavy metal ions Hg and Ag based on lateral flow assays.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.

View Article and Find Full Text PDF

Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg, meanwhile the green emission of AgNCs increases synchronously.

View Article and Find Full Text PDF

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

In this work, we have explored the metal ion sensing properties of two bisbenzimidazole-based fluorescent probes, that differ in their conformational flexibility, in an aqueous medium. The compound with a flexible methyl spacer (1) experienced blue shifts in its absorption and emission maxima (along with a turn-off response) upon the addition of Hg ions. On the contrary, the compound with a relatively rigid structure (2) showed red shifts in both its absorption and emission maxima (along with a turn-off response) when treated with Hg under similar conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!