NMR studies of cooperative effects in adsorption.

Langmuir

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.

Published: December 2010

The conversion of gas adsorption isotherms into pore size distributions generally relies upon the assumption of thermodynamically independent pores. Hence, pore-pore cooperative adsorption effects, which might result in a significantly skewed pore size distribution, are neglected. In this work, cooperative adsorption effects in water adsorption on a real, amorphous, mesoporous silica material have been studied using magnetic resonance imaging (MRI) and pulsed-gradient stimulated-echo (PGSE) NMR techniques. Evidence for advanced adsorption can be seen directly using relaxation time weighted MRI. The number and spatial distributions of pixels containing pores of different sizes filled with condensate have been analyzed. The spatial distribution of filled pores has been found to be highly nonrandom. Pixels containing the largest pores present in the material have been observed to fill in conjunction with pixels containing much smaller pores. PGSE NMR has confirmed the spatially extensive nature of the adsorbed ganglia. Thus, long-range (≥40 μm) cooperative adsorption effects, between larger pores associated with smaller pores, occur within mesoporous materials. The NMR findings have also suggested particular types of pore filling mechanisms occur within the porous solid studied.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la103584kDOI Listing

Publication Analysis

Top Keywords

cooperative adsorption
12
adsorption effects
12
pore size
8
pgse nmr
8
smaller pores
8
adsorption
7
pores
7
nmr
4
nmr studies
4
cooperative
4

Similar Publications

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

Effectual CH reclamation from CH/N blends by existing physisorbents in industrialization confronts the adversity of frustrated separation performance, weak structural strength, and restricted scale-up preparation. To solve aforesaid bottlenecks, herein, a strategy is presented to fabricate synergistic strong recognition binding sites in a robust and scalable optimum Cu(pma) with ultramicroporous feature regarding superb CH separation versus N. By virtue of the synergistic contribution of multiple affinities accompanied by enormous potential field overlap of pore restriction, it imparts strong recognition binding toward CH molecules.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential "life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown.

View Article and Find Full Text PDF

Interactions between cellulose nanocrystals and conventional/gemini surfactants.

Carbohydr Polym

March 2025

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. Electronic address:

Research on the interaction between surfactants and cellulose nanocrystals (CNC) has mainly focused on the interaction between CNC and conventional surfactants, and there are no reported studies on the interaction between CNC and gemini surfactants. The interactions between CNC and conventional surfactant (tetradecyltrimethylammonium bromide, termed as TTAB), asymmetric gemini surfactant ([CH(CH)N(CH)N(CH)CH]Br (14-6-6)) or symmetric gemini surfactant ([CH(CH)N(CH)N(CH)CH]Br (14-6-14)) were examined. With increasing surfactant concentration, interaction of TTAB/CNC was described by three regions, i.

View Article and Find Full Text PDF

Quaternized Nanofiber-Based Anion-Exchange Chromatography Membrane with Periodic Diagonal Surface Structure for Efficient Protein Separation.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.

Constructing a nanofibrous membrane with high flow rate surface pore structure and high-density ligand chemical structure is a promising strategy to balance the trade-off between high flow rates and high adsorption capacity for protein separation and purification. Herein, a nanofiber-based ion-exchange chromatography membrane with a periodic diagonal surface structure and high ionic strength ligands was fabricated using dispersion cross-linking, wet coating, and template printing with a three-wire diagonal woven mesh. For this membrane, EVOH nanofibers were used as skeleton, glutaraldehyde (GA) as cross-linking agent, and quaternized chitosan (QCS) as binder and functional ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!