Porous nanocrystalline silicon (pnc-Si) is a 15 nm thin free-standing membrane material with applications in small-scale separations, biosensors, cell culture, and lab-on-a-chip devices. Pnc-Si has already been shown to exhibit high permeability to diffusing species and selectivity based on molecular size or charge. In this report, we characterize properties of pnc-Si in pressurized flows. We compare results to long-standing theories for transport through short pores using actual pore distributions obtained directly from electron micrographs. The measured water permeability is in agreement with theory over a wide range of pore sizes and porosities and orders of magnitude higher than those exhibited by commercial ultrafiltration and experimental carbon nanotube membranes. We also show that pnc-Si membranes can be used in dead-end filtration to fractionate gold nanoparticles and protein size ladders with better than 5 nm resolution, insignificant sample loss, and little dilution of the filtrate. These performance characteristics, combined with scalable manufacturing, make pnc-Si filtration a straightforward solution to many nanoparticle and biological separation problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311995PMC
http://dx.doi.org/10.1021/nn102064cDOI Listing

Publication Analysis

Top Keywords

porous nanocrystalline
8
nanocrystalline silicon
8
pnc-si
5
high-performance separation
4
separation nanoparticles
4
nanoparticles ultrathin
4
ultrathin porous
4
silicon membranes
4
membranes porous
4
silicon pnc-si
4

Similar Publications

Utilizing electrospinning to fabricate porous polyvinylidene fluoride/cellulose nanocrystalline/MXene films for wearable pressure sensors.

Int J Biol Macromol

January 2025

Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China; State Silica-based Materials Laboratory of Anhui Province, Bengbu 233000, PR China. Electronic address:

Flexible, stable, and highly sensitive pressure sensors have garnered significant interest for their potential applications in wearable electronics and human-computer interaction. However, pressure sensor substrates prepared by electrospinning currently face challenges related to inadequate mechanical properties and low conductivity. Therefore, fabricating films with high flexibility, excellent mechanical properties, and sensing capabilities is still a great challenge.

View Article and Find Full Text PDF

Preceramic polymer-hybridized phenolic aerogels and the derived ZrC/SiC/C ceramic aerogels with ultrafine nanocrystallines.

Nanoscale

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phenolic and carbon aerogels have important applications for thermal insulation and ablative resistance materials in aerospace field. However, their antioxidant ability in long-term high-temperature aerobic environments faces serious challenges. To solve this problem, Zr/Si preceramic polymer hybridized phenolic resin (PR-ZS) aerogels were prepared a facile sol-gel method.

View Article and Find Full Text PDF

Nanodiamonds (NDs) containing optically active centers have gained significant relevance as the material of choice for biological, optoelectronic, and quantum applications. However, current production methods lag behind their real needs. This study introduces two CVD-based approaches for fabricating NDs with optically active silicon-vacancy (SiV) color centers: bottom-up (BU) and top-down (TD) methods.

View Article and Find Full Text PDF

Precipitation/dissolution of insulating LiS has long been recognized as the rate-determining step in lithium-sulfur (Li-S) batteries, which dramatically undermines sulfur utilization at elevated charging rates. Herein, we present an orientated LiS deposition strategy to achieve extreme fast charging (XFC, ≤15 min) through synergistic control of porosity, electronic conductivity, and anchoring sites of electrode substrate. Via magnesiothermic reduction of a zeolitic imidazolate framework, a nitrogen-doped and hierarchical porous carbon with highly graphitic phase was developed.

View Article and Find Full Text PDF

A general flame aerosol route to kinetically stabilized metal-organic frameworks.

Nat Commun

October 2024

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.

Article Synopsis
  • * The authors present a new method for creating MOFs using non-equilibrium flame aerosol synthesis, which allows for the creation of both nano-crystalline and amorphous MOFs.
  • * This innovative synthesis can produce complex MOFs with multiple metal cations and has the potential for high-performance applications, such as using these materials in catalysts for CO oxidation, making it suitable for scalable industrial production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!