Leaf area index (LAI) is one of the most important structural parameters of terrestrial ecosystem, while the remote sensing retrieval and the ground optical instrument measurement and based on canopy gap model are the effective approaches to rapidly obtain LAI. However, these two approaches can only acquire effective LAI (LAI(e)), due to the clumping of vegetation canopy. Taking the experimental forest farm of Northeast Forestry University at Maoershan Mountain in Heilongjiang Province of Northeast China as study site, this paper measured the forest canopy LAI(e) by LAI2000, and estimated the LAI by the combination of TRAC (tracing radiation and architecture of canopies) measurement of foliage clumping index. A LAI remote sensing retrieval model was constructed through the analysis of the relationships between different vegetation indices calculated from Landsat5-TM and measured LAI(e). The results showed that at the study site, the LAI of broad leaved forests was close to the LAI(e), but the LAI of needle leaved forests was 27% larger than the LAI(e). Reduced simple ratio index (RSR) had the highest relationship with measured LAI(e) (R2 = 0.763, n = 23), which could be used as the best predictor of LAI. The LAI at study site increased rapidly with increasing elevation when the elevation was below 400 m, but had a slow increase when the elevation was from 400 m to 750 m. When the elevation was above 750 m, the LAI decreased. There was a significant correlation between the forest canopy LAI and aboveground biomass.
Download full-text PDF |
Source |
---|
Sensors (Basel)
December 2024
Xuejiawan Power Supply Company, Ordos 010300, China.
Recently, massive intelligent applications have emerged for the smart grid (SG), such as inspection and sensing. To support these applications, there have been high requirements on wireless communication for the SG, especially in remote areas. To tackle these challenges, a UAV-assisted heterogeneous wireless network is proposed in this paper for the SG, where multiple UAVs and a macro base station collaboratively provide a wide range of communication services.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan.
In this study, we experimentally demonstrate a PPLN-based free-space to SMF (single-mode fiber) conversion system capable of efficient long-wavelength down-conversion from 518 nm, optimized for minimal loss in highly turbid water, to 1540 nm, which is ideal for low-loss transmission in standard SMF. Leveraging the nonlinear optical properties of periodically poled lithium niobate (PPLN), we achieve a wavelength conversion efficiency of 1.6% through difference frequency generation while maintaining a received optical signal-to-noise ratio of 10.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical and Electrical Engineering, Massey University, Auckland 0632, New Zealand.
Freshwater resources are facing increasing challenges to water quality, due to factors such as population growth, human activities, climate change, and various human-made pressures. While on-site methods, as specified in the USGS water quality sampling handbook, are usually precise, they require more time, are costly, and provide data at specific points, which lacks the essential comprehensive geographic and temporal detail for water body assessment and management. Hence, conventional on-site monitoring methods are unable to provide a complete representation of freshwater systems.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
The last decade has seen significant progress in the development of flexible electronics and sensors, particularly for display technologies and healthcare applications. Advancements in scalable manufacturing, miniaturization, and integration have further extended the use of this new class of devices to smart agriculture, where multimodal sensors can be seamlessly attached to plants for continuous and remote monitoring. Among the various types of sensing devices for agriculture, flexible mechanical sensors have emerged as promising candidates for monitoring vital parameters, including growth rates and water flow, providing a new avenue for understanding plant health and growth under varied environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!