Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970898 | PMC |
http://dx.doi.org/10.1631/jzus.B1000193 | DOI Listing |
Hematology
December 2025
Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, People's Republic of China.
Purpose: We report the case of a 6-year-old boy who presented with muscular hypertonia, impaired growth, and recurrent infections, who was diagnosed with purine nucleoside phosphorylase (PNP) deficiency with two novel mutations in the gene. He underwent a hematopoietic stem cell transplantation (HSCT) from an unrelated donor, and we observed the clinical outcome.
Methods: We retrospectively analyzed the clinical manifestations and outcomes of this patient who underwent HSCT.
Cells
December 2024
Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.
Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.
Cancer Med
December 2024
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.
Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.
View Article and Find Full Text PDFJ Pathol Clin Res
January 2025
Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Homozygous 9p21 deletions usually result in a complete loss of S-methyl-5'-thioadenosine phosphorylase (MTAP) expression visualizable by immunohistochemistry (IHC). MTAP deficiency has been proposed as a marker for predicting targeted treatment response. A tissue microarray including 2,710 urothelial bladder carcinomas were analyzed for 9p21 deletion by fluorescence in situ hybridization and MTAP expression by IHC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!