In breast cancers, the appearance of metastasis is synonymous with poor prognosis. The metastatic process is usually associated with epithelial-mesenchymal transition (EMT) which is often induced by several soluble factors produced either by the tumour cells themselves or by cells constituting the tumour microenvironment. The aim of the present study was to determine whether the mesenchymal properties given by some molecules such as N-cadherin, for instance, could be acquired by cancer cells via the trogocytosis process with cells of the tumour microenvironment. Hospicells are stromal cells which were first isolated from cancer cell aggregates of patients with ovarian cancer. We recently showed that these cells are immunosuppressive for T lymphocyte functions and confer chemoresistance to cancer cells by the transfer of the MDR protein via trogocytosis. In this study, we showed that a mammary cancer cell line (MDA-MB-231) acquires patches of membrane via oncologic trogocytosis with Hospicells. This unidirectional and active process depends on actin polymerization and can be increased via inhibition of the Src family and decreased via inhibition of PI3K. Trogocytosis between Hospicells and MDA-MB-231 does not lead to the direct acquisition of N-cadherin but rather it leads to the production of soluble factor(s) which induce de novo expression of N-cadherin by the cancer cells. The novelty here is that this factor is produced only if cancer cells interact and undergo trogocytosis with Hospicells. This new expression could confer a more invasive phenotype to the cancer cells and thus can explain the correlation of the presence of Hospicells with the number of invaded lymph nodes in patients with mammary adenocarcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo_00000797DOI Listing

Publication Analysis

Top Keywords

cancer cells
28
trogocytosis hospicells
16
cells
11
cancer
9
oncologic trogocytosis
8
expression n-cadherin
8
soluble factors
8
tumour microenvironment
8
cancer cell
8
hospicells
6

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.

Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!