Cholera toxin (CT) causes the massive secretory diarrhea associated with epidemic cholera. To induce disease, CT enters the cytosol of host cells by co-opting a lipid-based sorting pathway from the plasma membrane, through the trans-Golgi network (TGN), and into the endoplasmic reticulum (ER). In the ER, a portion of the toxin is unfolded and retro- translocated to the cytosol. Here, we established zebrafish as a genetic model of intoxication and examined the Derlin and flotillin proteins, which are thought to be usurped by CT for retro-translocation and lipid sorting, respectively. Using antisense morpholino oligomers and siRNA, we found that depletion of Derlin-1, a component of the Hrd-1 retro-translocation complex, was dispensable for CT-induced toxicity. In contrast, the lipid raft-associated proteins flotillin-1 and -2 were required. We found that in mammalian cells, CT intoxication was dependent on the flotillins for trafficking between plasma membrane/endosomes and two pathways into the ER, only one of which appears to intersect the TGN. These results revise current models for CT intoxication and implicate protein scaffolding of lipid rafts in the endo-somal sorting of the toxin-GM1 complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994338 | PMC |
http://dx.doi.org/10.1172/JCI42958 | DOI Listing |
Int J Hyperthermia
December 2024
Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
Background: Cryoablation (cryo) is a local anti-tumor method and activation of immunity is one of its mechanisms, but it is affected by many factors. Numerous studies have proved that combination therapy based on cryo can activate immunity more effectively and synergistically. Cryo combined with chemotherapy(chemo) has been proven to improve the quality of life and prolong survival of tumor patients, but the immune effect is still unclear.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Mitodicure GmbH, Kriftel, Germany.
Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.
View Article and Find Full Text PDFGenes Cells
January 2025
School of Science and Technology, Gunma University, Kiryu, Japan.
Sulforaphane (SFN), an isothiocyanate found in plants of the Brassicaceae family, possesses antioxidant, apoptosis-inducing, and radiosensitizing effects. As one of the mechanisms of cytotoxicity by SFN, SFN has been suggested to be involved in the induction of DNA damage and inhibition of DNA repair. Recently, we reported on the potency of SFN in inducing single-ended double-strand breaks (DSBs) that are caused by the collision of replication forks with single-strand breaks (SSBs).
View Article and Find Full Text PDFCancer Med
January 2025
Division of Oncology, The Children's Hospitial of Philadelphia, Philadelphia, Pennsylvania, USA.
Background: Single antigen (Ag)-targeted immunotherapies for acute lymphoblastic leukemia (ALL) are highly effective; however, up to 50% of patients relapse after these treatments. Most of these relapses lack target Ag expression, suggesting targeting multiple Ags would be advantageous.
Materials & Methods: The multi-Ag immune responses to ALL induced by transducing cell lines with xenoAgs green fluorescent protein and firefly luciferase was elucidated using flow cytometry, ELISA, and ELISpot assays.
ChemMedChem
December 2024
East China University of Science and Technology School of Pharmacy, Department of Pharmaceutical Sciences, 130 Meilong Rd., 200237, Shanghai, CHINA.
The expression of Klebsiella pneumoniae carbapenemase (KPC), a type of carbapenem-hydrolyzing β-lactamase, in Gram-negative bacteria has caused significant bacterial resistance to carbapenems, the antibiotic of last resort. Herein, we describe the discovery of 2-carboxyquinoline boronic acids as inhibitor of KPC. We have identified fluoro-substituted carboxyquinoline boronic acids 1e as the most potent inhibitor, with an IC50 of 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!