Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993343 | PMC |
http://dx.doi.org/10.1073/pnas.1007246107 | DOI Listing |
Bot Stud
January 2025
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.
View Article and Find Full Text PDFBiometals
January 2025
Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China. Electronic address:
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA.
Application of algicides produced by naturally occurring bacteria is considered an environmentally friendly approach to control harmful algal blooms. However, few studies assess the effects of bacterial algicides on non-target species, either independently or with other stressors. Here, we measured sub-lethal effects of dinoflagellate-specific algicide IRI-160AA on the estuarine fish Fundulus heteroclitus and Menidia menidia in laboratory experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!