Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archpediatrics.2010.199 | DOI Listing |
Molecules
December 2024
Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
Nat Microbiol
January 2025
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Improved vaccination strategies for tuberculosis are needed. Intravenous (i.v.
View Article and Find Full Text PDFSci Adv
January 2025
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.
View Article and Find Full Text PDFRadiology
December 2024
From the Department of Radiology, St Vincent's University Hospital, Elm Park, Dublin 4, D04 T6F4, Ireland (S.F., S.C., J.D.D.); Department of Radiology, University of British Columbia, St Paul's Hospital, Vancouver, British Columbia, Canada (A.H., F.C., J.A.L.); and School of Medicine, University College Dublin, Dublin, Ireland (S.F., J.D.D.).
In this review, the authors examine recent advancements in noninvasive cardiac imaging, focusing on cardiac CT, MRI, and PET, reviewing key publications from imaging and multidisciplinary journals from 2023. The authors discuss the increasing adoption of photon-counting CT and its applications in coronary and structural imaging, and explore various aspects of plaque and functional assessment, emphasizing their clinical implications. Radiation exposure analysis from the SCOT-HEART (Scottish Computed Tomography of the Heart) trial is also discussed.
View Article and Find Full Text PDFHardwareX
September 2024
Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, United States of America.
This article reports the design and construction of an open-source compressive loading and perfusion flow bioreactor for under $4000, as well as validation of the device and an example use-application. The bioreactor is capable of recording applied force and displacement as well as regulating media flow rate. This bioreactor was built to be user friendly, widely adaptable for modular changes, and made of readily available materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!